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To make no mistakes is not in the power of man; but from
their errors and mistakes the wise and good learn wisdom for
the future.

Plutarch
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Digital Communications Channels
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Definition (Discrete Channel)

A discrete channel is a system with an input alphabet X , and output
alphabet Y, and a probability transition matrix p(y |x) that describes the
probability of observing the output symbol y ∈ Y given input x ∈ X .

Definition

A discrete channel is said to be memoryless if the probability distribution
of the output symbols depends only on the current input (and is hence
conditionally independent of and previous inputs or outputs).
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Digital Communications Channels

p(y |x) is a little like the transition matrix in a Markov chain, but

1. the input and output states don’t have to be the same set

2. we only go through one step, so there is no “chain”

Information Capacity

Definition (Information Capacity)

The information capacity of a discrete memoryless channel with inputs
X ∈ X and outputs Y ∈ Y, and channel transition matrix p(Y |X ) is

C = max
pX (x)

I (X ;Y )

where I (X ;Y ) is the mutual information of X and Y .
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Information Capacity

We will soon learn that information capacity and operational capacity are
the same, so we will just call them channel capacity.

Reminder: mutual information is defined to be

I (X ;Y ) =
∑
x

∑
y

p(x , y) log
p(x , y)

pX (x)pY (y)

= D
(
p(x , y)

∥∥q(x , y)
)

= E

[
log

p(X |Y )

p(X )

]
,

where q(x , y) = pX (x)pY (y), where pX (x) and pY (y) are the marginal
distributions of X and Y respectively. Remember also that

I (X ;Y ) = H(X )− H(X |Y ) = H(Y )− H(Y |X )



Example 1: Binary Symmetric Channel

P(Y |X ) =

(
1− α α
α 1− α

)

I (X ;Y ) = H(Y )− H(Y |X )

= H(Y )−
∑
x

pX (x)H(Y |X = x)

= H(Y )−
∑
x

pX (x)H(α)

= H(Y )− H(α)

≤ 1− H(α)

because Y is a binary random variable. Hence

C ≤ 1− H(α) bits
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Example 1: Binary Symmetric Channel

We’ll do a bit more on this in a moment, but for the moment note the
extreme cases:

� When α = 0, the channel is noiseless, and C = 1 (i.e., we can send 1 bit per
symbol)

� When α = 1/2, then H(α) = 1 and the bound implies C = 0, which should
be obvious as when α = 1/2 we learn nothing about the input from each
output symbol.

Example 2: Binary Erasure Channel

P(Y |X ) =

(
1− α α 0
0 α 1− α

)
The probability we end up in state ? is α regardless of PX (x), so
H(Y |X = 0) = H(Y |X = 1) = H(α).
The entropy H(Y ) will be

H(Y ) = −pY (0) log2 pY (0)− pY (1) log2 pY (1)− α log2 α

as for entropy of Bernoulli, this is maximised when pY (0) = pY (1),
which requires they both are = (1− α)/2

H(Y ) = −(1−α)[log2(1/2)+log2(1−α)]−α log2 α = (1−α)H(1/2)+H(α)

So the capacity will be

C = max
pX (x)

H(Y )− H(Y |X )

= (1− α)H(1/2) + H(α)− H(α)

= 1− α
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Example 2: Binary Erasure Channel

� This capacity makes sense, as we are loosing capacity in proportion to the
probability symbols are erased

� But it isn’t immediately obvious that we could achieve this rate without loss
of information

� One approach is to use feedback (see earlier to see it can achieve this rate)

� It turns out we can achieve this even without feedback



Example 3: Non-Overlapping Output

P(Y |X ) =

(
2/3 1/3 0 0
0 0 1/2 1/2

)
The channel appears to be noisy, but isn’t really

I The input symbol is determined by the output
I So H(X |Y ) = 0

So we get

C = max
pX

I (X ;Y ) = max
pX

H(X )− H(X |Y ) = max
pX

H(X )

which we get for the uniform distribution over X , so

C = H(1/2) = 1 bit
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Example 3: Non-Overlapping Output

Example 5: Z Channel

P(Y |X ) =

(
1 0
α 1− α

)
Conditional entropy

H(Y |X ) = pX (1)H(α)

Entropy
H(Y ) = H

(
pX (1)(1− α)

)
Capacity

C = max
pX (x)

H(Y )− H(Y |X )

= max
pX (x)

H
(
pX (1)(1− α)

)
− pX (1)H(α)
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Example 5: Z Channel

From the definition of H(Y |X )

H(Y |X ) = pX (0) [p(0|0) log2 p(0|0) + p(1|0) log2 p(1|0)]

+pX (1) [p(0|1) log2 p(0|0) + p(1|1) log2 p(1|0)]

= pX (0) [1 log2 1 + 0] pX (1) [α log2 α + (1− α) log2(1− α)]

= pX (1)H(α)

and entropy WRT the output symbols is

H(Y ) = pY (0) log2 pY (0) + pY (1) log2 pY (1)

= (pX (0) + αpX (1)) log2(pX (0) + αpX (1))

+(1− α)pX (1) log2(1− α)pX (1)

= (1− (1− α)pX (1)) log2(1− (1− α)pX (1))

+(1− α)pX (1) log2(1− α)pX (1)

= H
(
pX (1)(1− α)

)



Example 5: Z Channel
Take

c(p) = H
(
p(1− α)

)
− pH(α)

dc

dp
= (1− α)H ′

(
p(1− α)

)
− H(α)

= (1− α) log
p(1− α)

1− p(1− α)
− H(α)

We maximise c(p) when dc/dp = 0, so

(1− α) log
p(1− α)

1− p(1− α)
= H(α)

p(1− α)

1− p(1− α)
= 2H(α)/(1−α)

p =
1

(1− α)
(
1 + 2H(α)/(1−α)

)
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Example 5: Z Channel

H ′(α) =
d

dα
[α logα + (1− α) log(1− α)]

= logα + 1− log(1− α)− 1

= logα− log(1− α)

= log
α

1− α

Example 5: Z Channel (small α approximation)
Capacity

C = max
pX (x)

H
(
pX (1)(1− α)

)
− pX (1)H(α)

which is maximised when

pX (1) =
1

(1− α)
(
1 + 2H(α)/(1−α)

)
For small α (small error probability) C can be approximated by

C ' 1− 0.5H(α)

Compare this to the binary symmetric channel with

C ≤ 1− H(α)
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Example 5: Z Channel (small α approximation)
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Symmetry
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Symmetric Channels

Definition (Symmetric Channel)

We say a channel is symmetric if the rows and columns of the channel
transition matrix are permutations of each other.
It is said to be weakly symmetric if every row is a permutation of the
others, and all the column sums

∑
x p(y |x) are equal.
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Example 1: Binary Symmetric Channel

P(Y |X ) =

(
1− α α
α 1− α

)
This example is symmetric

we can get either row or column by a permutation of (α, 1− α)
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Example 1: Binary Symmetric Channel

Example 2: Binary Erasure Channel

P(Y |X ) =

(
1− α α 0
0 α 1− α

)
This example not symmetric

we just have to look at column sums, which are not equal
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Example 3: Non-Overlapping Output

Example 4: Noisy Typewriter

P(Y |X ) =



1
3

1
3 0 0 0 · · · 0 0 1

3
1
3

1
3

1
3 0 0 · · · 0 0 0

0 1
3

1
3

1
3 0 · · · 0 0 0

. . .
. . .

. . .
. . .

0 0 0 0 0 · · · 1
3

1
3

1
3

1
3 0 0 0 0 · · · 0 1

3
1
3


This example is symmetric

we can get either row or column by a permutation of
(1/3, 1/3, 1/3, 0, . . . , 0)
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Example 5: Z Channel
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Example 5: Z Channel

Example 6

P(Y |X ) =

(
1/3 1/6 1/2
1/3 1/2 1/6

)
This example is only weakly symmetric

the rows are all a permutation of (1/3, 1/6, 1/2)

the columns are not all permutations of each other

but the columns all sum to 2/3
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Example 6

[CT91, p.190]



Theorem

For a weakly symmetric channel

C = log |Y| − H(r)

where r is any row of the channel transition matrix.
This capacity is achieved on a uniform distribution on the input alphabet.

Proof.

First note that the entropy of a permuted PMF is (by our Axioms)
unchanged, so H(r) will be the same for any row r of a weakly symmetric
channel.
Now remember that

I (X ;Y ) = H(Y )− H(Y |X )

= H(Y )− H(r)

≤ log |Y| − H(r)

with equality only if the output is uniform.
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[CT91, p.190]

Proof.

Now note that if the PMF for X is uniform, then

pX (x) =
1

|X |

and from the Law of Total Probability

pY (y) =
∑
x

p(y |x)pX (x)

=
1

|X |
∑
x

p(y |x)

=
1

|X |
c

=
1

|Y|

where c =
∑

x p(y |x) is guaranteed by weak symmetry.
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So we see that uniformity of the input implies uniformity for the output

of a weakly symmetric system.



Example 1: Binary Symmetric Channel

P(Y |X ) =

(
1− α α
α 1− α

)
Symmetric so

C = log 2− H(α)

= 1− H(α)

which was our upper bound before.
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Example 4: Noisy Typewriter
X = Y = {A,B,C , . . . ,Z , space}, and we type the correct letter with
probability 1/3, or an adjacent letter on either side, with the same
probability.

X

Y

1/3

A B C D E Y Z space

A B C D E Y Z space

The example is symmetric, and so

C = log 27− H(1/3, 1/3, 1/3)
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[CT91, 8.1.3, pp.185-186] or [Mac11, p.148].

P(Y |X ) =
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3
1
3

1
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. . .
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. . .
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. . .
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3

1
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1
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3
1
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Example 6

P(Y |X ) =

(
1/3 1/6 1/2
1/3 1/2 1/6

)
This example is weakly symmetric so

C = log 3− H(1/3, 1/2, 1/6)
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Section 3

Other Properties of Channel Capacity
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Bounds

0 ≤ C ≤ min
[

log |X |, log |Y|
]

The lower bound arise because I (X ;Y ) ≥ 0

The upper bound arises because

C = max I (X ;Y ) ≤ maxH(X ) = log |X |

and
C = max I (X ;Y ) ≤ maxH(Y ) = log |Y|
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Bounds

Does a C always exist?

Remember that

I (X ;Y ) is a continuous function of pX (x)

I (X ;Y ) is a concave function of pX (x) (for fixed p(y |x))

As noted above I (X ;Y ) is bounded above

Given these condition, a local maximum is always a global maximum, and
given it is finite we don’t have to talk about the supremum.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory October 8, 2013 28 / 30

Does a C always exist?

Remember that

I (X ;Y ) is a continuous function of pX (x)

I (X ;Y ) is a concave function of pX (x) (for fixed p(y |x))

As noted above I (X ;Y ) is bounded above

Given these condition, a local maximum is always a global maximum, and
given it is finite we don’t have to talk about the supremum.
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Can we find C?

Obviously, finding it could be hard analytically, but it is numerically
tractable:

−C is convex

standard restrictions on probabilities are linear

pi ≥ 0 and
∑

pi = 1

This allows standard convex optimisation approaches:

Karush-Kuhn-Tucker conditions;

Gradient projection algorithm.
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Further reading I

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
and Sons, 1991.

David J. MacKay, Information theory, inference, and learning algorithms,
Cambridge University Press, 2011.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory October 8, 2013 30 / 30


	Channel Information Capacity
	Information Capacity
	Symmetry
	Other Properties of Channel Capacity


