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Part I

Channel Capacity
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To make no mistakes is not in the power of man; but from
their errors and mistakes the wise and good learn wisdom for
the future.

Plutarch
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Section 1

Channel Coding Theorem
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Capacity

Definition (Operational Channel Capacity)

The highest rate of bits we can send per input symbol, with an arbitrarily
low probability of error is called the operational channel capacity.

Definition (Information Capacity)

The information capacity of a discrete memoryless channel with inputs
X ∈ X and outputs Y ∈ Y, and channel transition matrix p(Y |X ) is

C = max
pX (x)

I (X ; Y )

where I (X ; Y ) is the mutual information of X and Y .
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Digital Communications Channels
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Definition (Discrete Channel)

A discrete channel is a system with an input alphabet X , and output
alphabet Y, and a probability transition matrix p(y |x) that describes the
probability of observing the output symbol y ∈ Y given input x ∈ X .

We denote a Discrete Memoryless Channel (DMC) by the triple
(X , p(y |x),Y).
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Digital Communications Channels

We will work with DMC (Discrete Memoryless Channels) with no feedback
(X , p(y |x),Y). Then

Definition

The nth extension of a DMC is the channel (X n, p(y (n)|x (n)),Yn) where

p(yk |x (k), y (k−1)) = p(yk |xk), for k = 1, 2, . . . , n

and/or

p
(
y (n)

∣∣x (n)
)

=
n∏

i=1

p(yi |xi )
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Channel Codes

Definition (Channel Code)

A (M, n) code for channel (X , p(y |x),Y) consists of

1 An index set {1, 2, . . . ,M}
2 An encoding function with block size n

X n : {1, 2, . . . ,M} → X n

yielding codewords {X n(1),X n(2), . . . ,X n(M)}, called the codebook.

3 A decoding function

g : Yn → {1, 2, . . . ,M}

which is a deterministic rule which assigns a guess to each possible
received vector.
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Errors

Definition

The conditional probability of error given that index i is sent is

λi = P
(
g(Y n) 6= i | X n = X n(i)

)
=
∑
yn

p
(
yn
∣∣xn(i)

)
I
(
g(yn) 6= i

)
where I (·) is an indicator function.
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Errors

Definition

The maximal probability of error λ(n) for an (M, n) code is defined as

λ(n) = max
i∈{1,2,...,M}

λi

and the average probability of error P
(n)
e is

P
(n)
e =

1

M

M∑
i=1

λi = P(I 6= g(Y n))

where I is a random index uniformly chosen from {1, 2, . . . ,M}.
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Rate and Capacity

Definition (Rate)

The rate R of an (M, n) code is

R =
log M

n
bits per transmission

A rate is said to be achievable if there exists a sequence of
(
d2nRe, n

)
codes such that the maximal probability of error λ(n) → 0 as n→∞.

Definition (Operational Channel Capacity)

The capacity of a DMC is the supremum of all the achievable rates.
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Shannon’s Second Theorem

Theorem (Shannon’s Channel Coding Theorem)

All rates below capacity C = maxpX (x) I (X ; Y ) are achievable. Specifically,

for every rate R < C , there exists a sequence of (2nR , n) codes with
maximum probability of error λ(n) → 0.
Conversely, any sequence of (2nR , n) codes with maximum probability of
error λ(n) → 0 must have R ≤ C .
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Shannon’s Second Theorem

Shannon’s Channel Coding Theorem.

Full proof [CT91, pp.198-209], but some intuition follows:

1 We want to exploit the law of large numbers for larger blocks to
obtain something like convergence to accurate estimates.

2 We can’t increase capacity of a memoryless channel by using it
multiple times, independently.

3 So there need to be some structure in what we send, and we are
achieving this through our set of codewords.

4 By choosing a set of codewords that are reasonable distances apart,
we hope that the errors result in sequences that are closer to the real
codeword than any other.

5 It turns out random codewords are good enough.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory October 9, 2013 13 / 23



Random Codes

1 Fix p(x), and generate a random (2nR , n) code by taking

P
(
X n(i) = x1x2 · · · xn

)
=

n∏
k=1

p(xk) for each i ∈ {1, 2, . . . ,M = 2nR}

2 Write codewords as a 2nR × n matrix, with IID rows

C =


x1(1) x2(1) . . . xn(1)
x1(2) x2(2) . . . xn(2)

· · · · · ·
...

x1(2nR) x2(2nR) . . . xn(2nR)


3 The probability of a particular code is

P
(
C
)

=
2nR∏
w=1

n∏
k=1

p(xk(w))
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Using Random Codes

To use code C
1 Assume receiver and sender both know the code, and also the

transition probabilities p(y |x).

2 Assume message chosen according to uniform distribution

P
(
W = w

)
= 2−nR , for w = 1, 2, . . . , 2nR

and the w th codeword xn(w) is sent.

3 Receiver receives Y n according to the distribution

P
(
y (n)

∣∣x (n)(w)
)

=
n∏

i=1

p(yi |xi (w))

4 Receiver decodes by guessing that w is the input that generates a
jointly typical sequence (x (n)(w), y (n)).
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Joint AEP (see [CT91, Theorem 8.6.1,pp.195-196]

Definition (Jointly Typical)

The set A
(n)
ε of jointly typical sequences WRT to p(x , y) is the set of

sequences of n pairs (xi , yi ) with entropies ε-close to the true entropy, i.e.,

A(n)
ε =

{
(x (n), y (n))

∣∣∣dX < ε, dY < ε, dX ,Y < ε,
}

where

dX =

∣∣∣∣−1

n
p(x (n))− H(X )

∣∣∣∣
dX =

∣∣∣∣−1

n
p(y (n))− H(Y )

∣∣∣∣
dX ,Y =

∣∣∣∣−1

n
p(x (n), y (n))− H(X ,Y )

∣∣∣∣
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Joint AEP (see [CT91, Theorem 8.6.1,pp.195-196]

Theorem (Joint AEP)

Let (X (n),Y (n)) be sequences of length n drawn IID according to

p(x (n), y (n)) =
∏

i p(xi , yi ), and choose A
(n)
ε to be the set of jointly typical

sequences WRT to p(x , y) then

1 P
(

(X (n),Y (n)) ∈ A
(n)
ε

)
→ 1 as n→∞

2

∣∣∣A(n)
ε

∣∣∣ ≤ 2n(H(X ,Y )+ε)

3 If (X̃ (n), Ỹ (n)) ∼ p(x (n))p(y (n)), i.e., X̃ (n) and Ỹ (n) are independent
with the same marginals as p(x (n), y (n)) then

P
(

(X̃ (n), Ỹ (n)) ∈ A(n)
ε

)
≤ 2−n(I (X ;Y )−3ε)

and for sufficiently large n

P
(

(X̃ (n), Ỹ (n)) ∈ A(n)
ε

)
≥ (1− ε)2−n(I (X ;Y )+3ε)
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Implications of Joint AEP

The jointly typical set has

about 2nH(X ) typical X sequences

about 2nH(Y ) typical Y sequences

about 2nH(X ,Y ) jointly typical sequences

So when the two variables are not independent, H(X ,Y ) < H(X ) + H(Y ),
and hence not all pairs are jointly typical.

For a fixed Y (n) we can consider about 2nI (X ;Y ) such pairs before we are
likely to find a jointly typical pair.

That suggests there are about 2nI (X ;Y ) distinguishable signals X (n).
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Analysis of Random Codes

Actual assignment algorithm

1 Receiver receives Y n according to the distribution

P
(
y (n)

∣∣x (n)(w)
)

=
n∏

i=1

p(yi |xi (w))

2 Receiver decodes by guessing that w is the input that generates a
jointly typical sequence:

I If there is one codeword (x (n)(ŵ), y (n)) ∈ A
(n)
ε , then we decode as ŵ .

I If there are two codewords such that (x (n)(wi ), y
(n)) ∈ A

(n)
ε , then we

declare an error event 2.
I If there is no codeword (x (n)(w), y (n)) ∈ A

(n)
ε , then we declare an error

event 1.

3 In the 1st case, if ŵ 6= w we also declare an error event 2.
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Analysis of Random Codes

Probability of errors:

Probability the jointly typical sequence exists → 1 as n→∞ by the
first property of the Joint AEP

I so probability of type 1 errors Perror
1 → 0

Consider type 2 errors: then for some i 6= j(
x (n)(wi ), y

(n)(wj)
)
∈ A(n)

ε

I by the code generation process x (n)(wi ) and x (n)(wj) are independent
I hence x (n)(wi ) and y (n)(wj) are independent
I by third property of Joint AEP, for independent x (n)(wi ) and y (n)(wj)

P
(

(x (n)(wi ), y
(n)(wj)) ∈ A(n)

ε

)
≤ 2−n(I (X ;Y )−3ε)
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Analysis of Random Codes

Probability of errors: consider w = 1 WLOG

There are 2nR codewords, and so 2nR − 1 possible incorrect
codewords, so the chance of a type 2 error is

Perror
2 ≤

(
2nR − 1

)
2−n(I (X ;Y )−3ε)

≤ 2−n(I (X ;Y )−3ε−R)

Take rate R < I (X ; Y )− 3ε, then as n→∞ we have

Perror
2 → 0
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Cons of Random Codes

So why don’t we use random codes

1 very large blocks needed for asymptotic results to hold

2 assumes we know p(y |x)
3 all codewords must be shared

1 2nR × n matrix needs to be shared for large n

4 decoding very inefficient
1 compute all alternatives and decide which is jointly typical?
2 or store the mapping, which is impractical for even medium blocks

So these random codes are only really suitable for proofs, but there are
other places where random codes are used for real, but we will concentrate
on some others.
BTW, [CT91] from 1991, says there are no efficient codes that reach
capacity – that’s not true anymore, just to give an indication of how
recent this all is.
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Further reading I

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
and Sons, 1991.

David J. MacKay, Information theory, inference, and learning algorithms,
Cambridge University Press, 2011.
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