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There is a recorded case of a two-word military signal which
suffered a processing delay of 150 years. The message, deci-
phered at the Pentagon in 1972, simply read ”Send Reinforce-
ments”. It was sent on 1830 from Little Bighorn by General
Custer.

The Alice and Bob After Dinner Speech,
John Gordon, 1984
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Section 1

Error Correction
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FEC - Forward Error Correction

Sometimes called channel coding
Two main types

I block codes
F code data fixed-length blocks
F blocks are treated independently
F decoding in polynomial time (in block length)

I convolution codes
F coded continuously as a convolution
F deconvolution was hard until invention of Viterbi algorithm

Examples of block codes
I repetition (at least 3 times)
I Hamming codes (1st FEC code, 1950s)
I LDPC - Low Density Parity Checks
I Reed-Solomon coding (used in CDs)
I lots of others ...

Examples of convolution codes
I Turbo codes

Other issues:
I interleaving to avoid block errors (real channels aren’t memoryless)
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FEC - Forward Error Correction

Interleaving
Errors are often bursty

I Channel is not memoryless
I e.g.,

F scratches on a CD
F self-similar noise in wires [Man65]

I So a single block may contain many errors, and adjacent blocks will
have no errors

Interleaving helps this:
I instead of “blocks” take groups of bits spread out further apart
I e.g., take two code blocks AAAAA and BBBBB and send as

ABABABABAB

Bits in a single “block” are now from further apart in time
I hopefully correlations in errors are much smaller
I channel can be considered almost memoryless
I cost is extra delay

Different approaches:
I uniform (as above)
I random
I a little more complex for convolution coding
I others exist
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Hamming Codes

Code blocks of size n

Aim is to send at rates below capacity with arbitrarily small errors for
large enough blocks

Introduce redundancy, but more efficiently than simple repetition

Let’s start by extending idea of parity checks
I lets do multiple parity checks, and write them in matrix form

H =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


and construct the parity check by taking

p = Hx

assuming that x is a block of 7 bits, and the arithmetic is on GF (2).
I This is like parity checks on three subsets of bits.
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Hamming Codes

The parity check is constructed using

p = Hx

Now imagine that there are errors e in the received signal r, so

r = x + e

Recompute the parity check on the received signal

Hr = H(x + e) = p + He

Obviously we can detect any error vector He 6= 0
I so this is a helpful way to think about parity checks, and error detection
I but we can use the same approach to do error correction as well
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Vectors with He = 0

number(hex) vector

0 0000000

1 0001111

2 0010011

3 0011100

4 0100101

5 0101010

6 0110110

7 0111001

8 1000110

9 1001001

A 1010101

B 1011010

C 1100011

D 1101100

E 1110000

F 1111111



Hamming Codes

The check is constructed using p = Hx
Note that H is a 3× 7 matrix

I its rows are linearly independent
I so it has rank 3 and nullity 4

Null space of H
I space

{
x ∈ {0, 1}n | Hx = 0

}
I dimension (nullity) = 4
I so it is a space with 24 elements =

number(hex) vector

0 0000000

1 0001111

2 0010011

3 0011100
...

...

Note that the minimum number of 1’s (except for trivial case) is 3
I call this the weight
I so we can detect any error vector with 2 or less errors
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Definition (Matrix rank)

The column (row) rank of a matrix is defined to be the maximum
number of linearly independent columns (rows) of the matrix.

The column rank of a matrix A is the dimension of the column space of
the matrix, i.e., the space of all linear combinations of its columns
Likewise for row rank.
It turns out that the column and row rank are equal. Also, importantly
here,

rank(A) + nullity(A) = n

where

� n is the number of columns

� the nullity is the dimension of the null space of A, i.e., the space
{x | Ax = 0}

Hamming Distance

Weight here was 3
I this is the minimum number of undetectable errors
I we can formalise this

Definition (Hamming distance)

The Hamming distance between two strings x and y (of the same length)
is a count of the number of different elements.

In our example:
I Hamming distance between transmitted and received signal is the

number of errored bits
I Weight is the min distance such that an error can’t be detected, i.e.,

error vector is not in the null space of H
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Hamming Coding

Now imagine, we only allow codewords c from the null space of H
(see above)

I by definition Hc = 0

So we don’t need to transmit parity check bits, because they are all 0

Moreover, we can correct 1 bit error by taking choosing the codeword
which is closest to the received signal

I assume one bit error in ith spot so r = c + ei
I then

Hr = H(c + ei ) = Hei = hi

So we have a simple way to correct errors
I match Hr to the columns of H, and that tells you the error
I reverse to get the signal
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We mean closest in the sense that it minimises the Hamming distance.

ei is the vector with 0s except in the ith spot which is 1

Hamming Code

So Hamming codes work by incorporating redundancy by restricting
the allowed codewords, instead of adding bits

I we know this is extra redundancy, because we can compare entropies
F uniformly distributed 7 bit sequences have H(X ) = 7
F uniformly distributed codewords from above H(X ) = 4

I so we send 4 bits of information for every 7
I so this is a lot better than sending 3 repetitions to correct 1 bit error

It’s a linear code

Have to do encoding:
I first 4 bits (above) give all possible combinations
I in general for k × n matrix

F block length is n
F the matrix can be arranged so that first k bits encode the signal
F extra n − k bits are parity checks

I call this a systematic code

We gave an example above, but how do you construct such a code?
I can we do better in terms of efficiency?
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symbol codeword encoding

0 0000 0000000

1 0001 0001111

2 0010 0010011

3 0011 0011100

4 0100 0100101

5 0101 0101010

6 0110 0110110

7 0111 0111001

8 1000 1000110

9 1001 1001001

A 1010 1010101

B 1011 1011010

C 1100 1100011

D 1101 1101100

E 1110 1110000

F 1111 1111111



Construction of Hamming codes

General Hamming codes (for some `)
I block size n = 2` − 1
I message length k = 2` − `− 1
I minimum weight d = 3 (distance between codewords)

Note that H will be (n − k)× n
I H has n = 2` − 1 columns, and n − k = ` rows
I elements of H are {0, 1},

so columns of H will include every non-zero combination (for ` > 2)

Common approach for construction
I simply list all numbers m = 1, 2, . . . , n in binary
I use these as the columns of the matrix, e.g., ` = 3

H =

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


But this is non-systematic

I parity bits are at columns 2i
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` = 2 (special case)
H = [1 1 1]

` = 3 we get

H =

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


` = 4 we get

H =


1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1



Construction of Hamming Codes

We also need a k × n code generator matrix G such that

HGT = 0

codes can then be constructed by taking

cm = GTam

where am = m2, i.e., the vector given by digits of the integer
m = 0, 1, . . . , 2k − 1 written in binary

The codewords satisfy the required property:

Hcm = HGTam

= 0

And the codewords are all unique, because they contain am plus some
parity bits.

We don’t actually have to remember all the codes, as we can
construct the coding on the fly by multiplying blocks by G .
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` = 2
H = [1 1 1]

has possible
G = [1 1 1]

Then the code words based on a0 = 0 and a1 = 1

(0, 0, 0)T = GT0

(1, 1, 1)T = GT1

Hence the simplest Hamming code is the repetition code.



Construction of Systematic Hamming Codes

We can turn this into a systematic form (as above) by
I permuting the columns
I performing row operations (creating linear combinations) of the rows

Use these to put it into the form

H =
(
A
∣∣∣ In−k

)
and this is useful because then

G =
(
Ik

∣∣∣ − AT
)

i.e., G produces systematic codes, and

HGT =
(
A
∣∣∣ In−k

)( Ik
−A

)
=
(
AIk − In−kA

)
= 0
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` = 3 the systematic version of H is

H =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


and so

A =

 1 1 0 1
1 0 1 1
0 1 1 1


and then

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


NB: Matlab has a function hammgen that creates the H matrix, but

seems to do it as H = (In−k | A).

Block Codes in General

Systematic linear block codes (n, k , d)
I block size n
I information bit k
I minimum weight (Hamming distance between codewords) d
I rate = k/n

General Hamming codes (for some `) are(
2` − 1, 2` − `− 1, 3

)
e.g. above we have the (7, 4, 3) Hamming code with rate

r =
k

n
=

2l − 1− `

2` − 1
= 1− `

2` − 1
= 4/7

linear (n, k, d) codes can be expressed through either (n − k)× n
“parity” or more generally the check matrix H, or the k × n code
generator matrix G

I doesn’t have to be binary
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Hamming codes
` n rate
2 3 1− 2/3 ' 0.333
3 7 1− 3/7 ' 0.571
4 15 1− 4/15 ' 0.733
5 31 1− 5/31 ' 0.839
6 63 1− 6/63 ' 0.905

so we can see the rate converges to 1 quite quickly (but block sizes also
increase quite quickly).

Actually, to detect 2 bit errors, we have to assume we aren’t doing error
correction as well, as d = 3 means that two bit errors in one codeword
could look like 1 bit error in another.

Apparently popular is the (127, 120, 3) code, with an extra parity bit so
that single errors can be corrected, and double errors detected at the
same time.



Analysis of Block Codes
Take a linear block code with “parity” matrix H weight d

I minimum number of ones in null space vectors is d
F except for trivial all zeros vector

I if used as a parity check (by including extra bits on an arbitrary
codeword), then

p = Hr = H(c + e) = Hc + He

which is only = Hc if He = 0, so error vector must have at least d
errors, so we can detect d − 1 errors.

I Hamming codes all have d = 3

Take the codewords from the null space of H so Hc = 0. Then take
two such ci 6= cj and

H(ci − cj) = Hci − Hcj = 0

so ci − cj must also be in the null space, and hence is codeword.
So the minimum Hamming distance between any two codewords is d

I so it takes at least d errors to get from one codeword to another
I so we can correct bd/2c errors
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Analysis of Block Codes

Intuitively, we take our set of symbols, and map them into a larger space
(in this case a higher dimensional space), where they are further apart.

If we choose codewords that are distance d apart, and correct errors by
assuming the closest codeword is correct, then we will map back to the
correct codeword if the received word is less than d/2 from the original.

Definition (Cyclic code)

A cyclic code over GF (q) is a code with the special property that any
cyclic shift of a codeword is another codeword.

That is, if (x1, x2, . . . , xn−1, xn) is a codeword, then (x2, x3, . . . xn, x1) is a
codeword (as are other cyclic shifts) [Gal68, p.221]. Cyclic codes have a
generator polynomial (as in CRCs), from which all the codewords can be
derived. So CRCs are actually just a special case of block error coding –
and in general linear error detection and error correction codes are related.

Reed-Solomon Codes

non-binary, cyclic error-correcting (n, k , n − k + 1) code
add t check symbols

I can detect up to t errored symbols
I can correct up to bt/2c symbols
I can also be used to fill in erasures

view message as a polynomial p(x) over a finite field
I simple (old) view

F k source symbols
F create n > k code symbols by oversampling polynomial
F use interpolation to reconstruct polynomial

I better view
F encoding symbols from coefficients of p(x)g(x) for some cyclic

generator polynomial g(x)

For q > n > k there is a RS code
I alphabet size q
I block length n (usually choose n = q or q − 1)
I message length k
I distance d = n − k + 1

Used in CDs, DVDs, blu-ray, DSL, WIMAX, QR codes, ...
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� CDs use interleaved (32, 28, 5) and (28, 24, 5) Reed-Solomon codes

– can correct bursts of up to 4000 errors
– needed because errors in CDs often caused by scratches



Examples
QR (Quick Response) codes

http://en.wikipedia.org/wiki/QR_code

QR uses black or white square dots
I corner squares to help registration
I several standards/versions with different resolutions/coding
I e.g. can code for binary, numeric or alpha numeric data
I error correction

F codewords are 8 bits
F Reed-Solomon error correction at different levels

I sometimes deliberately exploited by adding artwork that is correctable
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LDPC - Low Density Parity Checks

Hamming codes can’t approach theoretical capacity

LDPC is a linear code like Hamming

Construct code using sparse matrix H
I often generated randomly!
I decoding is NP-complete
I good approximations are fairly recent

Can approach theoretical limit for capacity
I binary symmetric memoryless channel
I error rate can be made as small as desired
I rate approaches maximum

Now used for high-end applications like satellite DTV, 10 Gps
Ethernet, or deep space comms

I lower decoding complexity than alternatives
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Convolution Codes

Basic idea: instead of coding a block at a time we code the next
symbol using (potentially) information about all the input symbols
and/or their encoding.

I iterative mathematical expression as a Moving Average (MA)

y j
i =

∞∑
k=0

hjkxi−k = [hj ∗ x](i)

(equivalent AutoRegressive (AR) process is possible)
F xi is the input
F y j

i is the jth output (we can have more than one)
F hj

k is the jth impulse response

Turbo codes (1993) are the best instantiation
I close to channel capacity (before LDPC)
I used for deep space comms, and 3G mobile

Viterbi algorithm used for decoding
I decoding becomes a statistical inference problem
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Convolution examples:
Simple AR process

y(n) =

p∑
i=1

a(i)y(n − i) + b(0)x(n)

Simple (causal) MA process

y(n) =

q∑
i=0

b(i)x(n − i)

Equivalence, e.g., EWMA (Exponentially Weighted Moving Average)

AR : y(n) = ay(n − 1) + (1− a)x(n)

is equivalent to

MA : y(n) = (1− a)
∞∑
i=0

aix(n − i)

Source-Channel Coding

We know now

how to do compression

how to encode for error correction

but the two seem at odds. For one, we want to remove redundancy, and
for the other, we want to increase it.
The fundamental question left to answer is what do we do with an
arbitrary signal?
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Source-Channel Coding

The key insight is that we can doing compression (source coding), and
then channel encoding independently

decoderencoder

information
source receiverABCD...

channel

Xn Ynp(y|x)

compressor decompressorsource coding

channel coding
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Source-Channel Coding

The key insight is that we can doing compression (source coding), and
then channel encoding independently

Compression reduces redundancy
I best thing to do if the channel was noiseless

F but that is exactly what channel coding is aimed at achieving

I output symbols have maximum entropy per symbol
F otherwise we could compress further

I so typically, output would be approximately IID uniform

Channel coding introduces redundancy to combat errors
I our approach assumed that source was IID
I for a symmetric channel, channel capacity for uniform input
I well compressed input has these properties

Now we have a flexible way to introduce the right amount of redundancy,
in the best way to avoid errors.
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Also in real systems, the two parts are often completely separate (see
layering discussions). But also note that not all IP traffic is compressed,
so channel coding may be making assumptions about input that aren’t
true.

We can construct cases where the above doesn’t work, or where
two-stage encoders such as the above aren’t optimal. In other cases, we
might like to use the human ability to decode signals such as speech
(which we are very good at), and hence we don’t want to compress it,
and try to detect errors algorithmically.



Delay vs errors

Transmission introduces delays (per hop)

Propagation delay (e.g., speed of light in fibre)

Queueing is caused by transient congestion of packets

Transmission delay is time to transmit a packet onto a line
= packet size / line rate

Processing delay is time to do all the things you need to do to a
packet or block

I process codewords
I forward and update packet
I check CRCs

bigger blocks require longer times to transmit and process. Interleaving
makes it worse.
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Delay vs errors

Examples

ARPANET low speed links (56 kbps), and slow processors (IMPs)
I propagation: coast-to-coast in US ∼ 30ms
I transmission: 1500× 8/56000 = 0.22 seconds.
I queueing: a couple of packets ∼ a few seconds
I processing: similar order to trans, but smaller.

so transmission and queueing times dominate.

modern national backbone (10 Gbps)
I propagation: coast-to-coast in US ∼ 30ms
I transmission: 1500× 8/1.0e10 = 1.2 ns.
I queueing: large buffers (up to 0.2 seconds)
I processing: ∼ 30 ns.

so queueing is dominant, unless low load, where propagation becomes
dominant.
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Delay vs errors

We can reduce errors
I checking, and retransmitting
I larger block for FEC

Cost (1) is extra bits needed
I asymptotically, can achieve C
I often assume this cost is small as a result

Cost (2) is extra processing delay
I CRC on packet headers is checked at each hop
I wireless FEC used on wireless hop
I end-to-end FEC only used at end points

So there is a tradeoff between sending quickly (with high noise) and
hence lower channel rate, and more FEC and more delay, and sending
a low rate with less checking

I there is art in choosing rates/codes well
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Error detection and feedback

Maybe we can do better with error detection, and feedback than
FEC?

I channel capacity theorem assumed no feedback
I error detection seems more efficient than correction

Turns out that feedback capacity is just the same
I see [CT91, Theorem 8.12.1, p.213]

But error detection and feedback may be
I easier to implement
I more efficient for finite codes

On the other hand
I feedback requires more RTTs
I could require implementation of timeout timers
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