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Part I

Network Coding
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E pluribus unum (out of many, one).

de facto motto of the United States until 1956
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Section 1

Multicast
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The two biggest classes of information transportation are

point-to-point (unicast): from 1 source to 1 sink

broadcast: 1 one source to all sinks

But there is a third, which sits in between: multicast
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Multicast

1 source and multiple destinations (but not everyone)
I e.g., send video of an event to a group of interested viewers
I e.g., each person in a video conference multicasts their video to the

other participants

Could be achieved either
I broadcast to everyone
I multiple point-to-point links

but these are inefficient

Goal to distribute the information as efficiently as possible
I avoid sending the same information over the same links more than once
I routers have to not just forward, but also replicate packets
I ideally: optimise information transport as a whole, not just per

connection
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Multicast

Point to point
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Multicast

Broadcast
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Multicast

Multicast (dumb)
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Multicast

Multicast (smart)
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Multicast rate

How much can we send over a network using multicast?

We are aiming to solve multicast problem

But start simple with degenerate case: unicast
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Unicast Maximum Flow Problem

A network is a directed graph G(N , E)
I each link e ∈ E has a rate limit, denoted by re (≥ 0)
I can think of a mapping r : E → R+

We have a source s and a sink t

A flow fe represents the traffic on a link e ∈ E
I its also a mapping f : E → R+

I it is constrained such that 0 ≤ fe ≤ re for all e ∈ E
I we also require flows to be conserved, so flow into a node must flow out∑

u

f(u,v) =
∑
w

f(v ,w)

for all v ∈ N\{s, t}
The maximum flow problem is to maximise

∑
s f(s,v) =

∑
t f(v ,t),

i.e., the total flow between s and t
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Cutsets

Definition (Partition)

X , X̄ is a partition of a set N , if X̄ = N\X , that is

X ∪ X̄ = N
X ∩ X̄ = φ

Definition (Cutset)

A cutset of a partition (X , X̄ ) of the nodes of G(N , E) is the set of links
that create the partition

C(X , X̄ ) = {(i , j) ∈ E | i ∈ X , j ∈ X̄}

Definition (Cutset capacity)

The capacity c(X , X̄ ) of a cutset is the sum over the capacities of the
links in the cutset.
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Cutset example

cutset

X
X
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Max-Flow Min-Cut Theorem

Theorem

The maximum flow is equal to the minimum cutset capacity over all
cutsets that separate the source s and sink t.

Essentially, we can formulate the max-flow problem as a linear program,
with the min-cut problem as its dual.
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Generalisations

The maximum multi-commodity flow problem is a generalisation of
max flow problem

I same basic setup
I now multiple “commodities” each with source and sink
I alternative versions of the problem (e.g., satisfy demands with

minimum cost, or maximise possible flows)
I can be solved as a linear program

F however, often, we don’t want to separate flows
F then it becomes an NP-complete linear integer program

We can imagine generalising to multicast
I breaks flow conservation rules
I we deal with that by introducing new nodes
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Multicast max flow

Assume we have flow we want to maximise from source s to a set of
sinks T
Expand the graph G(N , E) to G′

I install a new node t ′

I every node t in T is connected to t ′ by an arc (t, t ′)
I rate constraint of edges (t, t ′) is r(t,t′) =∞

Now we find max flow by finding the min cutset between s and t ′

Intuitively, t ′ acts as a single sink node that collects all of the flows
into T

I thus by maximising the flow to t ′, we maximise the total flow to T
[Yeu10, p.423]

note that this isn’t really how multicast works, but neither was the
unicast, flow maximisation problem

I they are idealisations that ignore the realities of routing in current
networks

I but they provide an upper bound on what is achievable
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Multicast

It has some problems (that don’t really concern us here):

you need support for it in routers, and it can cause them performance
issues

multicast routing is harder than p-2-p routing

congestion control is hard

result is management complexity, and easier attacks for hackers.

It also has problems that do concern us:

reliability through error detection is hard
I if a packet is corrupted early on, all the receivers see an error, and all

request a resend
I all the resends come back to the one source

is copying packets really an efficient way to do this?
I can we actually achieve the type of max flow described above?
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Section 2

Network Coding
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Butterfly Network Example [Yeu10, Section 17.1, p.413]
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Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory October 22, 2013 17 / 39



Multicast Solution

s

t2

t1
1

2

3 4

replicate traffic at relevant places to avoid resending
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Network Coding Solution

s

t2

t1
1

2

3 4

b1

b2

b1+b2b1

b1

b2

b1+b2

b1+b2

b2

exploit the full information capacity of network
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Setup

network represented by directed graph G = (N , E)
I arcs are lossless with rate 1 symbol per unit time
I but we allow multiple arcs between two nodes (e.g., its a multigraph)
I an arc ` has destination d(`) and origin o(`)
I a node v has a set I(v) of input arcs
I a node v has a set O(v) of output arcs
I the network is acyclic

Source node s ∈ N
I originates r source processes X1, . . . ,Xr

I each source is a stream of independent random bits, 1 per unit time

There is a set T of sink nodes ti ∈ N\s
I all the source processes must be communicated to all T
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Basic Operation

f(b1,b2)b1

b2
g(b1,b2)

I  (v) O  (v)v

b1 and b2 are “packets” of bits, both the same length

we will look at noiseless networks

treat it as if everything happens at the same time

limit f (·) and g(·) to be scalar, linear functions
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More notation

r source processes X1, . . . ,XR

refer to bitstream on arc ` as arc process and denote it by Y`
I the arc process on the output arcs of v will be functions of one or more

of the inputs of v

each sink t ∈ T forms output processes {Zt,i}ri=1
I a solution to such a problem defines the coding operations at the

nodes, and decoding operations at the sinks, such that each sink
reconstructs the source processes perfectly, i.e.,

Zt,i = Xi , for all i = 1, 2, . . . r , and t ∈ T
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Communications Processes

r source processes X1, . . . ,XR

I in groups (packets) of m bits
I Xi ∈ Fq, where q = 2m

refer to bitstream on arc ` as arc process and denote it by Y`
I the arc process on the output arcs of v will be functions of one or more

of the inputs of v

each sink t ∈ T forms output processes {Zt,i}ri=1
I a solution to such a problem defines the coding operations at the

nodes, and decoding operations at the sinks, such that each sink
reconstructs the source processes perfectly, i.e.,

Zt,i = Xi , for all i = 1, 2, . . . r , and t ∈ T

assume no delays, or memory, so we only need to consider one symbol
at a time
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Scalar Linear Functions

Y` =
∑

k∈O(`)

fk,`Yk +

{ ∑
i ai ,`Xi , if o(`) = s

0, otherwise

Zt,i =
∑

k∈O(t)

bt,i ,kYk

operations are over the finite field Fq

fk,` and ai ,` ∈ Fq are called local coding coefficients

bt,i ,k ∈ Fq are the decoding coefficients

represent each set of coefficients by corresponding vector: f, a, b
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Scalar Linear Functions

Since all coding operations are scalar linear operations, and the network is
acyclic, we can recursively define the arc processes in terms of their
ancestors, and ultimately in terms of the sources:

Y` =
r∑

i=1

ci ,`Xi

the c are called the global coding coefficients

the c are a function of f, a
I we could recursively calculate these with the formula on previous slide
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Scalar Linear Functions

Likewise we can write the output processes as scalar linear operations on
the source

Zt,i =
r∑

i=1

mt,i ,kXk

zt = xMt

z = [Zt,1, . . . ,Zt,r ]

Mt = [mt,i ,k ] is a function of f, a, and b, which can be calculated
using

Mt = A(I − F )−1BT
t
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Scalar Linear Functions
Likewise we can write the output processes as scalar linear operations on
the source

zt = xMt

Mt = A(I − F )−1BT
t

A = [ai ,`] is a r × |A| transfer matrix of coding coefficients that
transfer sources to source output arcs.

F = [fk,`] is a |A× |A| transfer matrix of coding coefficients that d(k)
transfers its inputs into outputs (with zeros where arcs don’t exists).
The matrix F n gives the transfer function along n-hop paths.
Thus

(1− F )−1 = I + F + F 2 + · · ·
gives the transfer function along all possible paths.

B = [bi ,`] is a r × |A| transfer matrix in which the sinks transform
their inputs into the output processes.
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Scalar Linear Functions

Likewise we can write the output processes as scalar linear operations on
the source

zt = xMt

Mt = A(I − F )−1BT
t

The matrices (or originally vectors) A, F and B specify the scalar
linear network code

We are looking for codes such that for all t ∈ T

Mt = A(I − F )−1BT
t = I
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Solvability and Throughput

How do we determine the maximum possible rate, or decide if a given
problem is solvable?

How would we construct a solution?

What is the throughput advantage over conventional
packets/multicast?
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Solvability and Throughput
Generalisation of the max-flow/min-cut theorem

Theorem

The following three statements are equivalent:

1 There exists a flow rate r between s and t.

2 The capacity of the minimum cutset between s and t is at least r .

3 The determinant of the transfer matrix Mt is non-zero over the ring
of polynomials in F2[a, f,b].

So this essentially says that we can achieve the maximum flow using
the type of coding described above.

We know we can’t achieve it (at least in the butterfly network
example) with simple packet-based multicast, so there is some
improvement here.

There are generalisations to multicast, with the same basic
implication.
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Code Construction

The obvious next question is how to construct such a coding scheme

Variants
I centralised vs decentralised/distributed
I generic vs packet
I deterministic vs random
I acyclic vs cyclic
I ...

We’ll do unicast but generalise
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Code Construction: centralised

Solvable multicast on known acyclic network (as above)
I r source processes (as above)
I d = |T | sink nodes
I code on the finite field Fq

We have a deterministic algorithm that
I runs in O

(
|E|dr(d + r)

)
time

I achieves the bound for q = 2m ≥ d , i.e., 2 to the block length is at
least the same as the number of sinks

F e.g., for the butterfly network d = 2, and so we only need size 1 blocks
(which we saw)
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Code Construction: centralised algorithm

Deterministic algorithm sketch:
1 Find r arc-disjoint paths Pt,1, . . . ,Pt,r from s to each sink t ∈ T

I Take ∪t∈T ,i=1...rPt,i = A ⊂ E , i.e., the set of arcs on these paths, then
we don’t need the others to support the flow, so only look at G′(N ,A),
and all other coding coefficients are zero.

2 Set coding coefficients of G′(N ,A) in topological order
I set St = the set of arcs from each path Pt,1, . . . ,Pt,r whose coding

coefficients were most recently set
I must have: for each sink t, the coding vectors c` of the arcs ` in the

set St form a basis for Fr
q

I Various tricks (see [HL08, pp.21-23]) are used to allocate the
coefficients c in order such that this condition is satisfied
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Code Construction: random codes

Randomly choose (a, f) from sufficiently large finite field
I (a, f) determines c` for each arc ` by taking `th column of

C = A(I − F )−1

I bt given from Bt given such that Mt = A(I − F )−1BT
t = I

Finds a solution with high probability

Pr(good code) ≥
(

1− d

q

)η
where η is the number of arcs ` with associated random coding
coefficients.

I e.g., in butterfly example d = 2, so take take blocks of 2 symbols, and
q = 22 = 4, and put random coefficients on all arcs so η = 9, and then

Pr(good code) ≥ (1/2)9 ' 0.002
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Code Construction: packet networks

Problem: packet networks don’t have a good way to distribute the
coding information

I e.g., most traditional routing protocols are distributed

With fixed sized packets, treat each as m bit message block
I r exogenous source packets (per unit time)

Use random coding, coefficients decided locally
I sinks need to know how to decode
I use a “pilot” tone

F for a batch of r source packets
F add to the header of the ith header ei
F when it gets to the sink, each of the headers will have been converted

into the corresponding coding vectors

I decode by computing inverse of coding transfer matrix

Introduces overhead
I mr extra bits per sink
I need to amortise this over multiple packets, or have packets consisting

of multiple message blocks
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Extensions:

There are many extensions:

models of temporal dependency

noisy links

security extensions

multiple sources

we just touched on the surface of the topic.
But its all pretty recent, and I don’t know any practical implementations
that are actually used (yet).
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Source Separation

Imagine we want to transmit two sources X and Y (noiselessly)

If we compress sources separately we need H(X ) + H(Y ) bits
I call this source separation

Joint compression bits =

H(X ,Y ) ≤ H(X ) + H(Y )

with equality iff they are independent
I independence means there is no advantage to joint compression

(asymptotically)

But for network coding, we coding two sources together is helpful
I we don’t have the same source/channel separation we had before
I compressing the signal, and then sending it over the channel isn’t

optimal
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Assignment

Take the butterfly example above, and simulate for q = 2 and q = 3
all of the possible codings for this network, and from this enumeration
calculate the exact probability that the code is workable.

Compare this to the estimated probability of getting a valid random
code.
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Further reading I

Tracey Ho and Desmond S. Lun, Network coding: An introduction, Cambridge
University Press, 2008.

Raymond W. Yeung, Information theory and network coding, Springer, 2010.
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