Information Theory and Networks
Lecture 29: Cryptography and Information Theory

Matthew Roughan (slides with help from Naomi Benger) matthew.roughan@adelaide.edu.au
http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/InformationTheory/

School of Mathematical Sciences,
University of Adelaide
October 18, 2013

Cryptography and Information Theory

Part I

Secrets

- NSA and PRISM
- you may have heard about the NSA tapping peoples' email
- you may not care?

Secrets

- NSA and PRISM
- you may have heard about the NSA tapping peoples' email
- you may not care?
- Secrets are a part of life
- Credit card numbers
- Corporate strategies
- KFC's secret spices
- Secrets are not bad
- Do you want some random guy on the Internet to know your credit card details and PIN?
- Do you want a burglar to know that you keep lots of cash in your house?
- Do you want your government (in a repressive regime) to know you are a protestor?
- If you are a policeman, do you want the Mafia to know where you live?

Secrets

- NSA and PRISM
- you may have heard about the NSA tapping peoples' email
- you may not care?
- Secrets are a part of life
- Credit card numbers
- Corporate strategies
- KFC's secret spices

Secrets

- NSA and PRISM
- you may have heard about the NSA tapping peoples' email
- you may not care?
- Secrets are a part of life
- Credit card numbers
- Corporate strategies
- KFC's secret spices
- Secrets are not bad
- Do you want some random guy on the Internet to know your credit card details and PIN?
- Do you want a burglar to know that you keep lots of cash in your house?
- Do you want your government (in a repressive regime) to know you are a protestor?
- If you are a policeman, do you want the Mafia to know where you live?
- You have a right to secrets!

How to Share a Secret

- Secrets need to be shared
- Credit card numbers (when you make a purchase)
- Military secrets (when to attack)
- What's needed
- Secrecy (Duh!)
* no-one else can read the secret
- Shouldn't be (too) hard to do
- Sometimes we don't even want anyone else to know there was a secret
- Sometimes even the participants shouldn't know the (whole) secret
\star nuclear launch codes

```
Information Theory
~
LHow to Share a Secret
~
```



```
~
\
```


Cryptography or How to Send a Secret

Crypto + graphy $=$ Hidden + Writing

```
Information Theory
~
\
```


Cryptography

```
Information Theory
~
LCryptography
```

- Cryptography is a critical part of modern life
- not just for 007
- banks use it all the time
- secure web sites (look for https in the URL)
- Take some data and encrypt it using a key
- if we know the key its easy to decrypt
- if we don't know the key, it is impossible
- actually, we usually only require that it would be very (very, very) unlikely that someone could translate it back.

Cryptography

```
M
```

Classical example far predates Da Vinci

- e.g. Caesar cipher (attributed to Julius Caesar)
text A B C D E F G H I J K L M N O P Q R S T U V W X Y Z cipher X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
- For example: shift letters by 3 for

Friends, Romans, countrymen, lend me your ears
Cofbkap, Oljykp, zlrkqoujbk, ibka jb ulro byop

- Much easier to encrypt/decrypt using a crypto-wheel
- The key is how far you shift the letters.
- was still used until 1915 (at least)
- how good is it?

Cryptanalysis

Lets try to decode the Caesar cipher:

aol dvtiha rpssz wlvwsl pu adv dhfz: mpyza, aol hupths pz puklzaybjapisl. kpnnpun ovslz pu aol ohyk hbzayhsphu jshf ibpskz tbzjslz aoha vbajshzz vsftwpj dlpnoa spmalyz. ha upnoa, aolf vmalu dhukly aol yvhkz. zltp-ayhpslyz (yvhk ayhpuz) ohcl opa aolt ha opno zwllk, dpao hss 9 dollsz vu vul zpkl, huk aopz tlylsf thrlz aolt clyf huuvflk. aolf lewylzz aopz if zuvyapun, nshypun, huk dhsrpun hdhf. hshz, av zthssly jhyz, aol dvtiha iljvtlz h zfttlaypjhs shbujopun whk, dpao ylzbsaz aoha jhu il pthnpulk, iba uva hklxbhalsf klzjypilk. aol zljvuk dhf aol dvtiha rpssz wlvwsl ylshalz av paz ibyyvdpun ilohcpvby. pm h wlyzvu ohwwluz av wba aolpy ohuk kvdu h dvtiha ovsl, aol dvtiha dpss mlls aol kpzabyihujl huk aopur "ov! tf ovsl pz jvsshwzpun!" ha dopjo pa dpss iyhjl paz tbzjslk slnz huk wbzo bw hnhpuza aol yvvm vm paz ibyyvd dpao pujylkpisl mvyjl, av wylclua paz jvsshwzl. huf bumvyabuhal ohuk dpss il jybzolk, huk haaltwaz av dpaokyhd dpss jhbzl aol dvtiha av zptwsf ilhy kvdu ohykly. aol bumvyabuhal dpss aolu isllk av klhao aoyvbno aolpy jybzolk ohuk hz aol dvtiha wylcluaz opt myvt zllrpun hzzpzahujl. aopz pz jvuzpklylk aol aopyk tvza ltihyyhzzpun ruvdu dhf av kpl, huk hbzayhsphuz kvu'a ahsr hivba pa tbjo.

$$
\begin{array}{ll}
\text { October } 18,2013 & 12 / 29 \\
\hline
\end{array}
$$

Practical Cryptanalysis

Hints:

- Look at letter frequencies.
- Look for common words.
- Look for double letters.
- Worst case: try all 25 possible keys.

```
Information Theory
~
Nasmy,
```


Practical Cryptanalysis

common English letter frequencies

October 18, 2013 14 / 29

Practical Cryptanalysis

Possible common words:
aol dvtiha rpssz wlvwsl pu adv dhfz: mpyza, aol hupths pz puklzaybjapisl. kpnnpun ovslz pu aol ohyk hbzayhsphu jshf ibpskz tbzjslz aoha vbajshzz vsftwpj dlpnoa spmalyz. ha upnoa, aolf vmalu dhukly aol yvhkz. zltp-ayhpslyz (yvhk ayhpuz) ohcl opa aolt ha opno zwllk, dpao hss 9 dollsz vu vul zpkl, huk aopz tlylsf thrlz aolt clyf huuvflk. aolf lewylzz aopz if zuvyapun, nshypun, huk dhsrpun hdhf. hshz, av zthssly jhyz, aol dvtiha iljvtlz h zfttlaypjhs shbujopun whk, dpao ylzbsaz aoha jhu il pthnpulk, iba uva hklxbhalsf klzjypilk. aol zljvuk dhf aol dvtiha rpssz wlvwsl ylshalz av paz ibyyvdpun ilohcpvby. pm h wlyzvu ohwwluz av wba aolpy ohuk kvdu h dvtiha ovsl, aol dvtiha dpss mlls aol kpzabyihujl huk aopur "ov! tf ovsl pz jvsshwzpun!" ha dopjo pa dpss iyhjl paz tbzjslk slnz huk wbzo bw hnhpuza aol yvvm vm paz ibyyvd dpao pujylkpisl mvyjl, av wylclua paz jvsshwzl. huf bumvyabuhal ohuk dpss il jybzolk, huk haaltwaz av dpaokyhd dpss jhbzl aol dvtiha av zptwsf ilhy kvdu ohykly. aol bumvyabuhal dpss aolu isllk av klhao aoyvbno aolpy jybzolk ohuk hz aol dvtiha wylcluaz opt myvt zllrpun hzzpzahujl. aopz pz jvuzpklylk aol aopyk tvza ltihyyhzzpun ruvdu dhf av kpl, huk hbzayhsphuz kvu'a ahsr hivba pa tbjo.

Practical Cryptanalysis

Possible common words:

- $\mathrm{aol}=$ the
- $\mathrm{h}=\mathrm{a}$
- ha $=$ at

Once we suspect a few, we can probably guess the key, but regardless, we could substitute the known letters back into the text, and probably guess more words, e.g., aolpy

```
Information Theory
~
```


Double letters:

aol dvtiha rpssz wlvwsl pu adv dhfz: mpyza, aol hupths pz puklzaybjapisl. kpnnpun ovslz pu aol ohyk hbzayhsphu jshf ibpskz tbzjslz aoha vbajshzz vsftwpj dlpnoa spmalyz. ha upnoa, aolf vmalu dhukly aol yvhkz. zltp-ayhpslyz (yvhk ayhpuz) ohcl opa aolt ha opno zwllk, dpao hss 9 dollsz vu vul zpkl, huk aopz tlylsf thrlz aolt clyf huuvflk. aolf lewylzz aopz if zuvyapun, nshypun, huk dhsrpun hdhf. hshz, av zthssly jhyz, aol dvtiha iljvtlz h zfttlaypjhs shbujopun whk, dpao ylzbsaz aoha jhu il pthnpulk, iba uva hklxbhalsf klzjypilk. aol zljvuk dhf aol dvtiha rpssz wlvwsl ylshalz av paz ibyyvdpun ilohcpvby. pm h wlyzvu ohwwluz av wba aolpy ohuk kvdu h dvtiha ovsl, aol dvtiha dpss mlls aol kpzabyihujl huk aopur "ov! tf ovsl pz jvsshwzpun!" ha dopjo pa dpss iyhjl paz tbzjslk slnz huk wbzo bw hnhpuza aol yvvm vm paz ibyyvd dpao pujylkpisl mvyjl, av wylclua paz jvsshwzl. huf bumvyabuhal ohuk dpss il jybzolk, huk haaltwaz av dpaokyhd dpss jhbzl aol dvtiha av zptwsf ilhy kvdu ohykly. aol bumvyabuhal dpss aolu isllk av klhao aoyvbno aolpy jybzolk ohuk hz aol dvtiha wylcluaz opt myvt zllrpun hzzpzahujl. aopz pz jvuzpklylk aol aopyk tvza ltihyyhzzpun ruvdu dhf av kpl, huk hbzayhsphuz kvu'a ahsr hivba pa tbjo.

Practical Cryptanalysis

Most common English double letters:

- ss
- ee
- tt
- ff
- II
- mm
- 00

Some tend to occur in the middle of words, and some more often at the ends (e.g. ss).

Practical Cryptanalysis

Decrypted text: (key $=7$) From Douglas Adams.

The wombat kills people in two ways: First, the animal is indestructible. Digging holes in the hard Australian clay builds muscles that outclass Olympic weight lifters. At night, they often wander the roads. Semi-trailers (Road Trains) have hit them at high speed, with all 9 wheels on one side, and this merely makes them very annoyed. They express this by snorting, glaring, and walking away. Alas, to smaller cars, the wombat becomes a symmetrical launching pad, with results that can be imagined, but not adequately described. The second way the wombat kills people relates to its burrowing behaviour. If a person happens to put their hand down a Wombat hole, the Wombat will feel the disturbance and think "Ho! My hole is collapsing!" at which it will brace its muscled legs and push up against the roof of its burrow with incredible force, to prevent its collapse. Any unfortunate hand will be crushed, and attempts to withdraw will cause the Wombat to simply bear down harder. The unfortunate will then bleed to death through their crushed hand as the wombat prevents him from seeking assistance. This is considered the third most embarrassing known way to die, and Australians don't talk about it much.

http://dangerousintersection.org/2009/01/21/
douglas-adams-guide-to-australia/

We can do better

```
Information Theory
\underset{0}{\infty}
N
```

- some cryptographers' tricks
- remove spaces, punctuation, and capitals
* makes cryptanalysis hard, but if we know the key, we can easily put spaces, etc., back in.
\star ilovemaths \Rightarrow I love maths
- mis-spell some words
\star I luv mths
« often good to remove double letters
- encode some common words separately
* e.g. "the" becomes the 27th letter
- avoid repetition or patterns
* avoid anything predictable
- better still, improve the cryptography algorithm

Better Codes

```
Information Theory
~
寅
```

- use a general substitution cipher
- not just a shift
- the key is more complicated
- need to give all substitutions

text			B	C	D		E	F	G		H			J	K			M		N	O	0		P	Q		R		S	T			V			X	Y Z
cipher			,	,	Y	,	B	F	D		E	C			H	,		J		K	G	G		-	O	O	N	R	R	Z			S			U	V T

- homophonic ciphers
- use multiple symbols for common letters
- breaks letter frequency analysis
- change the cipher at each step
- polyalphabetic cipher
- Vigenère Cipher

Vigenère Cipher

```
Information Theory
lug
```

- Key is a word, e.g., "secret"
- Each letter is encoded using a Caesar cipher, but we change the setting of the wheel for each letter
- use letters of the keyword to give the settings
- e.g.
* 1st plain text letter, set the wheel using "s"
* 2nd plain text letter, set the wheel using "e"
* 3rd plain text letter, set the wheel using "c"
* and when we get to the end of "secret" start again at "s"
- Makes analysis of patterns in text much harder.
- It can still be broken.

More cryptanalysis

A Vigenère Cipher, with a 3 letter key

gpf dpgs oqt qnaz fidg wjvh uje vpiwgrtg; hf rlbas bp iogfgcbmg gboe ph hju oxp dfxitknh, yhjeh nkgiv bf eonrasgd, gton vhf resupfetjxe ph aoa og vhf qtigr qnazgrt, vo cgioi ioxomxee kn bp ocucvte bpd dqmqney xesuipp og rolgr jp a qktdj dbtk sqon, yiuj bmcnl easfs, gqr jpfjpiug suckfu, wjvh b febnes yhp yoo'v tfnl zqu uje swlfu, aof wiq snklfu amn tig tjoe.

More cryptanalysis

```
Information Theory
~
N
```

Key choice is important! A bad choice made cryptanalysis possible here. God does not play dice with the universe; He plays an ineffable game of his own devising, which might be compared, from the perspective of any of the other players, to being involved in an obscure and complex version of poker in a pitch dark room, with blank cards, for infinite stakes, with a dealer who won't tell you the rules, and who smiles all the time

Terry Pratchett

Block Ciphers

- Why encrypt letters?
- Once we substitute symbols with numbers, we can include any symbol we like.
- e.g. pairs of letters: $26 \times 26=676$ possibilities
- could do something as simple as a Caesar-like cipher modulo 676
- number of possibilities make cryptanalysis harder

```
Information Theory
~
N
```

Letter Pair Cipher $(k=3)$

letter pairs	x	code $\quad y=x+3 \bmod 676$	
AA	0	3	
AB	1	4	
\vdots	\vdots	\vdots	
AZ	25	28	
BA	26	29	
BB	27	30	
\vdots	\vdots	\vdots	
BZ	31	34	
\vdots	\vdots	\vdots	
ZY	674	1	

```
Information Theory
\infty
\stackrel{\rightharpoonup}{\omega}
```


More Ciphers

- Playfair
- Enigma
- DES
- One-time pad (we'll come back to this)
- RSA
- ...

