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Part I

Cryptography and Information Theory
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Section 1

Public and Private Key Cryptography
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Private-Key Cryptography

Symmetric Cryptography, is so named as the keys used to encrypt and
decrypt a message are the same.

Anyone who knows the encryption key can decrypt a message, so it must
be kept private hence its also called Private-Key Cryptography

So there are some problems:
1 Key distribution: How can two parties agree on a key?

I rely on pre-existing secure communication...
I meet in person.
I use a trusted courier.

2 Key management: a group of t parties thus requires t(t − 1)/2 keys
when each pair wishes to communicate securely.

These keys must be kept secure and regularly changed to avoid potential
security breaches.
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Public-Key Cryptography

Idea: use keys kE and kD such that it is infeasible to calculate the one
from the other.

The first practical public key protocol was introduced by Whitfield Diffie
and Martin Hellman in 1976 in the form of a key exchange protocol.

The public key, kE , can be published and anyone wishing to communicate
with Alice just needs to find Alice’s public key from a list and encrypt the
message; only Alice will be able to decrypt the message using her
corresponding private key, kD .

This concept solves the problem of securely distributing keys. What’s
more, in a network of t people, only t keys are needed, a huge
improvement on the situation using symmetric cryptography.
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Public-Key Cryptography Requirements and Assumptios

The encryption function ekE : P 7→ C should
I be easy to compute y = ekE (x)
I should be 1-1 and must have an inverse (to decrypt) dkD : C 7→ P

we assume Eve knows the function ekE and the encryption key kE ,
and can evesdrop to learn y.

I It must be computationally infeasible to calculate kD from kE and y
I It must be computationally infeasible to calculate dkD without kD

A function ek is known as a “trap-door one-way function”.

“One-way” means it is difficult to invert.

“Trap-door” means that the inverse can be found if one knows some
additional information (the key k).
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The RSA Cryptosystem

Developed by Rivest, Shamir and Adelman, published in 1977.
I Clifford Cocks, an English mathematician, had developed an equivalent

system in 1973 at GCHQ, but it wasn’t declassified until 1997

Key Generation: Alice chooses two large primes (usually of
approximately the same size) p and q and then

nA = p · q

I Alice then chooses an encryption key eA such that
gcd(eA, φ(nA)) = gcd(eA, (p − 1) · (q − 1)) = 1.

I the public information is the pair kE = (eA, nA).
I the coprime condition ensures that eA has an inverse dA modulo φ(nA),

and kD = dA.
I to find dA we need to factor nA
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RSA

The message and ciphertext spaces, M and C, are the integers modulo nA
Encryption
To encrypt a message x to send to Alice, Bob uses the public key
kE = (eA, nA) to compute

y = ekE (x) = xeA mod nA

Decryption
When Alice receives y she computes

x = dkD (y) = ydA = xeA·dA = x l ·φ(n)+1 = x mod nA

by the Euler-Fermat theorem.
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Anyone can encrypt a message to send to Alice as (nA, eA) is public
knowledge.

Only Alice knows dA, so only Alice can decrypt the message.

The security of RSA is based on the belief that ek(x) = xb (mod n) is a
trapdoor one way function.

An opponent can find Alice’s public key (eA, nA), but as they do not know
p and q, they cannot easily find dA such that

eAdA ≡ 1 mod (p − 1)(q − 1)

this requires factorising nA.

There most efficient (known) algorithm for factorising large numbers, the
number field sieve, runs in subexponential time.
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RSA Encryption

Suppose that Alice wishes to send a message to Bob. She first converts
the message to numerical form.

A B C D E F G H I J K L M
00 01 02 03 04 05 06 07 08 09 10 11 12

N O P Q R S T U V W X Y Z space
13 14 15 16 17 18 19 20 21 22 23 24 25 26

Note: we encipher spaces as well as letters, and we represent each letter
by a two digit string.
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We need each plaintext string to be in Zn (and each ciphertext string will
be in Zn). We use the following systematic method to divide the message
into blocks that we can encipher:

Suppose that n has d digits. Then the digits of the plaintext message
are divided into blocks x1, x2, . . . , xk such that each block has size
d − 1 digits (with 0 s added to the last block, if necessary, to ensure
that it has d − 1 digits).

The ciphertext consists of k integers y1, y2, . . . , yk , each computed
by:

yj ≡ xej (mod n).

As we are working modulo n, each ciphertext yj is in Zn, that is, it
satisfies 0 ≤ yj < n.

The ciphertext is sent to Bob through any communication channel.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory October 29, 2013 12 / 37



The RSA cryptosystem is considered computationally secure: the best
known algorithm for breaking it involves solving the integer factorisation
problem.

To find x1, x2, . . . , xk given y1, y2, . . . , yk , with yj ≡ xej (mod n):

compute d . Since e is public knowledge this requires computing e−1

mod φ(n). To find φ(n) we need to know the factorisation of n.

This is computationally infeasible to factor (within a given time frame),
given current known techniques.

There are no proofs that integer factorization is computationally
difficult.

There are no proofs that the RSA problem is equally difficult.

The best known method for breaking RSA is to factor a large number ⇒
RSA problem is at most as hard as factoring (it may be easier using a yet
unpublished method).
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Basic Framework

Obviously, encrypting is a lot like coding

Ciphers
I have a key k ∈ K from keyspace K
I convert plaintext message x ∈M into ciphertext y ∈ C
I encryption: y = ek(x)
I decryption: x = dk(y)
I in some cases, a different (but related) key is used for encryption and

decryption (e.g., public key encryption)

Different attack models:
I Assume attacker has the ciphertext and plaintext, and just needs key
I Assume attacker only has ciphertext
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Section 2

Modern Notion of Security
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Computational Security

A cryptosystem is computationally secure if the best algorithm for breaking
it involves at least N operations (for some specified very large number N).

No known practical cryptosystem can be proved to be secure under this
definition.

In practice, we say a cryptosystem is computationally secure if the best
known algorithm to break it requires an unreasonably large amount of
computer time.

Often breaking a cryptosystem requires solving a one-way mathematical
problem: easy to compute in one direction, computationally infeasible to
reverse.
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Example: RSA

The RSA cryptosystem is considered computationally secure because the
best known algorithm for breaking it involves solving the integer
factorisation problem: It is easy to multiply numbers together but given a
large composite number it is computationally infeasible to factor it (within
a given time frame), given current known techniques.

There are no proofs that integer factorization is computationally
difficult.

There are no proofs that the RSA problem is difficult.

The best known method for breaking RSA is to factor a large number ⇒
RSA problem is at least as easy as factoring (it may be easier using a yet
unpublished method).
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Other Forms of Security

computational security says that no known algorithm can break the
security (with practical resources)

I this is typical today

unconditional security says that the encryption security doesn’t
depend on unproven assumptions

I e.g., our belief that integer factorisations is hard

perfect or information theoretic security says it cannot be broken,
even with infinite computational resources.

We develop now the theory of cryptosystems that are information
theoretically secure against ciphertext only attack (that is, we assume that
an opponent knows the cryptosystem used and has access to some
ciphertext).
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Assumptions on the Cryptosystem

To study unconditional security of a cryptosystem, we make the following
assumptions about our cryptosystem and its operation.

A1 Each key is used for at most one encryption.

A2 The probability distribution on the message space M is pM

A3 The probability distribution on the keyspace K is pK.

A4 The key and the plaintext are chosen independently.
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The probability distributions on M and K induce a probability distribution
on the ciphertext C:

For k ∈ K, define
C(k) = { ek(x) | x ∈M}.

So C(k) ⊆ C is the set of all possible ciphertexts that can be obtained by
using the key k.

Then for all y ∈ C,

pC(y) =
∑

{k|y∈C(k) }

pK(k)pM(dk(y)).
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Now, for each y ∈ C, x ∈M, we can calculate pC(y|x), the probability
that y is the ciphertext given that x was the plaintext:

pC(y|x) =
∑

{k|x=dk (y) }

pK(k).

So by Bayes’ Theorem, we can also find pM(x|y):

pM(x|y) =
pC(y|x)pM(x)

pC(y)
.
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Definition (Perfect Secrecy)

A cryptosystem has perfect secrecy if for all x ∈M, y ∈ C,

pM(x|y) = pM(x).

That is, knowledge of the ciphertext y does not give any information
above the plaintext x it came from.
Note: from Bayes’ Theorem, a cryptosystem has perfect secrecy if
pC(y|x) = pC(y) for all x ∈M, y ∈ C.

We make a fifth assumption about our cryptosystem, namely that each
ciphertext occurs with non-zero probability (if this is not true, we can
remove any ciphertext y with pC(y) = 0 from C).

A5 For each y ∈ C, pC(y) 6= 0.
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Example

Suppose that the 26 keys in the Shift Cipher are used with equal
probability 1/26. Then for any plaintext probability distribution, the Shift
Cipher has perfect secrecy.

Note: Recall that by the assumption A1, each key is used for the
encryption of only one letter, then another key is chosen.
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Example 2

Suppose that M = {A,B}, C = {a, b, c , d}, K = {k1, k2, k3} and that

pM(A) =
1

4
, pM(B) =

3

4

pK(k1) =
1

2
, pK(k2) =

1

4
, pK(k3) =

1

4
.

Further, suppose that the encryption functions eki are given by the table

A B

ek1 a b
ek2 b c
ek3 c d

We need to calculate pC(y) and pM(x |y) for each x ∈M and y ∈ C.
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Example 2

pC(a) =
3∑

i=1

pK(ki )pM(dki (a))

= pK(k1)pM(A)

=
1

2
· 1

4

=
1

8

pC(b) =
7

16

pC(c) =
1

4

pC(d) =
3

16
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Example 2

Now

pC(a|A) = PK(k |dk(a) = A) = p(k1) =
1

2
,

Thus

pM(A|a) =
pC(a|A)pM(A)

pC(a)
=

1
2 ·

1
4

1
8

= 1.

Similarly

pM(A|b) =
1

7

pM(A|c) =
1

4
pM(A|d) = 0

And pM(B|a) = 0, pM(B|b) = 6
7 , pM(B|c) = 3

4 , pM(B|d) = 1
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Example 2

Note now that

pM(A|c) = pM(A)

pM(B|c) = pM(B)

so knowing that the ciphertext is c doesn’t give any information about
which plaintext was used.

However, this is not true for the other ciphertext values. So the
cryptosystem does not have perfect secrecy.
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Perfect Security Lemma

Lemma (Perfect Security)

For perfect secrecy we must have |K| ≥ |C| ≥ |M|.

That is, the size of the keyspace must be at least as large as the size of
the set of all possible ciphertexts (which must in turn be at least as large
as the space of possible messages).
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Perfect Security Lemma

Proof.

For any plaintext string x ∈M perfect secrecy means we have

pC(y|x) = pC(y)

for all y ∈ C.
By the 5th assumption above, pC(y|x) > 0 for all y ∈ C. This says that for
each y ∈ C, there is at least one key k ∈ K such that ek(x) = y.

These keys must be distinct for different y, thus the number of keys is at
least the number of ciphertexts, that is |K| ≥ |C|.

Further, as ek :M→ C is an injection (that is, it is one to one), we have
that |C| ≥ |M|.
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Perfect Security Theorem

Theorem

Let (M, C,K, E ,D) be a cryptosystem with |K| = |C| = |M|. The
cryptosystem has perfect secrecy if and only if

1 every key is used with equal probability 1
|K| ;

2 for all x ∈M, y ∈ C there is a unique k ∈ K with y = ek(x).

Essentially, this says the one-time pad (or equivalents) are the only way to
get perfect secrecy.
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Perfect Security Theorem

Proof.

(=⇒) Suppose that the cryptosystem has perfect secrecy.
2: As in the proof of Lemma for perfect secrecy, for any x ∈M, y ∈ C,
there exists a key k ∈ K such that ek(x) = y. Now, as |K| = |C|, the key
k must be unique.
1: Let |K| = n (so we also have |M| = n = |C|) and let K = {k1, . . . , kn}
and M = {x1, . . . , xn}. Fix a ciphertext y ∈ C. By 2, there is a unique key
that maps xi to y, and these keys must all be different, so we can relabel
the keys so that eki (xi ) = y, i = 1, . . . , n. Now

pM(xi |y) =
pC(y|xi )pM(xi )

pC(y)
=

pK(ki )pM(xi )

pC(y)

and we also have that pM(xi |y) = pM(xi ) for i = 1, . . . , n as the
cryptosystem has perfect secrecy. Hence pK(ki ) = pC(y) for i = 1, . . . , n.
Hence the keys are used with equal probability, namely pC(y). Now as
|K| = n, we must have pK(ki ) = 1

n for i = 1, . . . , n.
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Perfect Security Theorem

Proof.

(⇐=) Exercise: Suppose that 1 and 2 hold for a cryptosystem
(P, C,K, E ,D) with |K| = |C| = |P|, and deduce that the cryptosystem
has perfect secrecy (that is, show that pM(x|y) = pM(x) for all
x ∈M, y ∈ C.
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The One-Time Pad

One well known realization of perfect secrecy is the one-time pad. This
was first described by Gilbert Vernam in 1917 for use in the encryption of
telegraph messages. It was proved unbreakable by Shannon over 30 years
later.

Let n ≥ 1. We put

M = C = K = (Z2)n = { (a1, . . . , an) | ai ∈ Z2 }.

For k ∈ K, define
ek(x) = x + k,

the vector sum modulo 2 and

dk(y) = y + k (mod 2).

Example: x = (1, 1, 0, 0, 0, 1, 1), k = (0, 1, 1, 1, 0, 1, 0), then
y = x + k = (1, 0, 1, 1, 0, 0, 1).
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If the key k is chosen randomly (and only used once), then by the theorem
of perfect secrecy, the one-time pad gives perfect secrecy.

The major disadvantage to the commercial use of a one-time pad is the
difficulty of sharing the key. It has to be as large as the plaintext, and
cannot be reused as that compromises the security. It has been used in
military and diplomatic applications where security may be vital.
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Information-Theoretic interpretation of Information
Theoretic Security

perfect secrecy if for all x ∈M, y ∈ C, we have pM(x|y) = pM(x).

theorem: if |K| = |C| = |M| the cryptosystem has perfect secrecy if
and only if

1 every key is used with equal probability 1
|K| ;

2 for all x ∈M, y ∈ C there is a unique k ∈ K with y = ek(x).

A1 Each key is used for at most one encryption.

A4 The key and the plaintext are chosen independently

Together these various properties and assumptions mean that

the keys are IID uniform

unique key to map y = ek(x) means that the cipher text must be IID
uniform as well

So the output of perfect encryption will be IID uniform.
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Other Examples

Perfect, or information-theoretic security can’t be broken even if the
hypothetical adversay has infinite computing power

I not vulnerable to future developments in computing or mathematics

But perfect security is impractical for many problems
I one-time pads are awkward at best

There are other algorithms, in other “secret sharing” problems which
have perfect security, that are more practical

I e.g., Shamir’s secret sharing
I private information retrieval
I quantum cryptography (?)
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Further reading I

Claude Shannon, Communication theory of secrecy systems, Bell System Technical
Journal 28 (1949), no. 4, 656–715,
netlab.cs.ucla.edu/wiki/files/shannon1949.pdf.
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