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Decoding is estimation

Estimation requires information
I sufficient statistics
I Fano’s inequality
I Fisher information matrix
I Cramer-Rao

Maximum entropy
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Estimation

A common estimation problem

We have a family probability distributions indexed by θ

{fθ(x)}

Our goal is to take some samples {Xi} and from these estimate (or
infer) the particular fθ(·) from which they were drawn

Typically we come up with an estimate θ̂

Rather than use the raw data we often base the estimate on some
statistics T (X1, . . . .Xn) of the data, e.g., the mean and/or variances,

There is a basic question about whether some set of statistics is
sufficient for the estimation problem, or whether we should be using
the raw data.
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Estimation

From [CT91, pp.36-38]

Data Processing Inequality

Definition

Random variables X , Y and Z are said to form a Markov chain in that
order (denoted by X → Y → Z ) if the conditional distribution of Z
depends only on Y , i.e., Z is conditionally independent of X given Y .

Simple example: if Z = g(Y ) then X → Y → Z

Theorem (Data Processing Inequality)

If X → Y → Z then
I (X ; Y ) ≥ I (X ; Z )

with equality iff X → Z → Y .

Simple example: I (X ; Y ) ≥ I (X ; g(Y ))
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Data Processing Inequality

From [CT91, pp.32].

This is the usual definition of Markov chain, but limited to three
time-steps (usually we would define a whole process). So the usual
conditions on probability functions of the data hold.

The proof just uses the chain rule for mutual information remembering
that

I (X ; Y |Z ) ≥ 0

with equality iff X and Y are conditionally independent given Z .



Sufficient Statistics
A common estimation problem

We have a family probability distributions indexed by θ

{fθ(x)}

Assume we have samples X1,X2, . . . ,Xn, and statistic
T (X1,X2, . . . ,Xn), then

θ → {X1,X2, . . . ,Xn} → T (X )

The data processing inequality states that

I
(
θ; {X1,X2, . . . ,Xn}

)
≥ I
(
θ; T (X1,X2, . . . ,Xn)

)
for any distribution on θ.

I No information is lost only if equality holds
I So θ → T (X1,X2, . . . ,Xn)→ {X1,X2, . . . ,Xn}

A statistic T (X ) is said to be sufficient for θ if it contains all the
information in X about θ, i.e., we have equality above, i.e.,
I (θ; X ) = I (θ; T (X ))
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From [CT91, pp.36-38]

Sufficient Statistic Example

Let Xi ∈ {0, 1} be IID Bernoulli RVs, with

θ = P(Xi = 1)

Given n samples X1,X2, . . . ,Xn we take

T (X1,X2, . . . ,Xn) =
n∑

i=1

Xi

Thus θ → {Xi} → T

Then

P
(

(X1,X2, . . . ,Xn) = (x1, x2, . . . , xn)
∣∣∣T = k

)
=

{
1

(nk)
, if T = k

0, otherwise.

essentially this means that given T , all sequences with a given
number of 1s are equally likely.

Thus θ → T → {Xi} and hence T is a sufficient statistic for θ
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From [CT91, pp.36-38].

There are many other examples of sufficient statistics used in estimation
problems (see any book on estimation or statistical inference).



Minimal Sufficient Statistics

Definition (Minimal Sufficient Statistic)

A statistic T (X ) is a minimal sufficient statistic relative to {fθ(x)} if it is
a function of every other sufficient statistic U(X ).

In terms of the data processing inequality this means that

θ → T (X )→ U(X )→ X

Hence a minimal sufficient statistic maximally compresses the information
about θ present in the sample X .
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Minimal Sufficient Statistics

From [CT91, pp.36-38].

In the preceeding example, the sufficient statistic was also minimal.

Section 3

Maximum Entropy Estimation
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Laplace’s principle of indifference

Definition (Laplace’s principle of indifference)

If there are n > 1 possibilities for some event, and they are
indistinguishable (except for their names) then each possibility should be
assigned a equal probability 1/n.

Often called the principle of insufficient reason.

Examples:

What is the probability of a 6 on a dice?

What is the probability of an Ace?

So this is the basic idea of probability that is often first presented to all
students, from which we often develop more complicated ideas by counting
and combinatorics.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory October 29, 2013 13 / 23

Laplace’s principle of indifference

Definition (Laplace’s principle of indifference)

If there are n > 1 possibilities for some event, and they are
indistinguishable (except for their names) then each possibility should be
assigned a equal probability 1/n.

Often called the principle of insufficient reason.

Examples:

What is the probability of a 6 on a dice?

What is the probability of an Ace?

So this is the basic idea of probability that is often first presented to all
students, from which we often develop more complicated ideas by counting
and combinatorics.2

0
1

3
-1

0
-2

9

Information Theory

Maximum Entropy Estimation

Laplace’s principle of indifference

Originally, the idea comes from Bernoulli and Laplace, who considered it
intuitive.

”Principle of insufficient reason” was renamed the ”Principle of
Indifference” by Keynes, who was careful to note that it arise when we
lack any more specific knowledge.

It leads naturally to believe that uniform priors are the way to go in
Bayesian analysis, i.e., a priori (before we have any evidence) we assume
the distribution is uniform, and then use any data we have through Bayes
law to correct this.

Laplace’s principle of indifference

Definition (Laplace’s principle of indifference)

If there are n > 1 possibilities for some event, and they are
indistinguishable (except for their names) then each possibility should be
assigned a equal probability 1/n.

Note that the uniform distribution is the distribution with the
maximum possible entropy

So, why not see the principle of indifference as a special case of a
larger rule of maximum entropy

We’ll need an analogue of entropy for continuous variates.
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Differential Entropy

Definition (Differential Entropy)

The differential entropy h(X ) for a continuous RV X with support S and
probability density function f (x) is

h(X ) = −
∫
S

f (x) log f (x) dx

if this exists.

Examples:

Uniform distribution: U(0, a)

h(X ) = −
∫ a

0

1

a
log

1

a
dx = log2 a bits

Normal distribution: variance σ2

h(X ) =
1

2
log2 2πeσ2 bits

See [CT91, p.486-87] for a table of entropies for various other distributions.
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Differential Entropy

Differential entropy is the natural generalisation of entropy to continuous
distributions, and is similar in many ways. We won’t go through all the
details here, and we shall often just call it entropy – usually the context
should make the distinction clear.

More on the relationship

� be careful as differential entropy can be negative

� be careful of the “if this exists”, and potential ∞s

� (for Riemann integrable PDFs) differential entropy is the limit of an
appropriate sequence of discrete RVs

� n-bit quantised version of a continuous RV has entropy

H(X ) = h(x) + n

� and we can define equivalents of joint and conditional entropy and mutual
information

Maximum Entropy

Definition (Maximum Entropy)

If there are n > 1 possibilities for some event, then each possibility should
be assigned a probability consistent with maximising the entropy of the
resulting distribution, consistent with any information we have about the
distribution.

Philosophically, we are trying to impose the fewest additional assumptions
on the distribution. We are aiming to avoid extracting information from
thin air.

Information we might have:

We know probabilities sum to 1

We might know something like the mean or variance

We might have some data
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Maximum Entropy

Idea goes back to Jaynes [Jay57a, Jay57b] (or at least his advocacy was
critical).



Maximum Entropy Distributions

Formally: maximise the entropy h(f ) over all probability densities f
satisfying

1 f (x) ≥ 0

2

∫
S

f (x) dx = 1

3

∫
S

f (x)ri (x) dx = αi , for i = 1, 2, . . . ,m

The first two are just standard constraints on densities. The third implies
certain “moment” constraints on the distribution.
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Maximum Entropy Distributions

Solution

Add Lagrange multiplier for each constraint, and maximise the functional

J{f } =

∫
g(f ) dx =

∫
−f (x) ln f (x) + λ0f (x) +

m∑
i=1

λi f (x)ri (x) dx

Euler-Lagrange equation:

0 =
∂g

∂f
= −1− ln f (x) + λ0 +

m∑
i=1

λi ri (x)

Rearranging we get
f (x) = eλ0−1+

∑m
i=1 λi ri (x)

where the λi are (as yet) unknown Lagrange multipliers.
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Example 1

Dice: we know there are 6 possibilities, but have not other information.

Maximising the entropy H(X ) corresponds to choosing the uniform
distribution (as in the principle of indifference).
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Example 1

Example 2
Assume that we know X ≥ 0 (which specifies is support S = [0,∞), and
that we know it mean ∫

S
f (x)x dx = µ

Then we get the exponential distribution

f (x) = eλ0−1+λ1x = Ae−λx

We can calculate the constants by putting f back into the constraints∫ ∞
0

f (x) dx = A
1

λ
= 1∫ ∞

0
xf (x) dx = A

1

λ2

= µ

So A = λ and λ = 1/µ so f (x) = 1
µe−x/µ
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Example 2

For example take the atomsphere. Particles have heights, and we’ll look
at this distribution. The average potential energy of these is fixed (by
energy in the atmosphere) so and this is proportional to the average
height, so it effectively fixes that. So the max entropy distribution of
particles in atmosphere is exponential (and this is a reasonable
approximation).

Exponential comes up in many, many other contexts.



Example 3

Assume that X has support (−∞,∞), and we know its mean µ and
variance σ2.

the exponent will be a quadratic
I so the distribution is a Gaussian distribution

Lagrange multipliers are chosen so that the mean and variance match
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Example 3

Applications

Estimation:
I suppose you have been told the mean and variance of a set of data
I in absence of any other information, the maximum entropy estimate of

the distribution from which the data was drawn is the normal
distribution (with said mean and variance)

I lots of other cases:
F spectral estimation
F traffic matrix estimation (max relative entropy)

Physics:
I see next lecture
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Further reading I

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
and Sons, 1991.

E.T. Jaynes, Information theory and statistical methanics, Physical Review 106
(1957), no. 4, 620–630.

, Information theory and statistical methanics. ii, Physical Review 108
(1957), no. 2, 171–190.

David J. MacKay, Information theory, inference, and learning algorithms,
Cambridge University Press, 2011.
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