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Everything
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If you take a pack of cards as it comes from the maker and
shuffle it for a few minutes, all traces of the original sys-
tematic order disappears. The order will never come back
however long you shuffle. There is only one law of nature
— the second law of thermodynamics — which recognises
a distinction between the past and the future. Its subject is
the random element in a crowd. A practical measure of the
random element which can increase in the universe but never
decrease is called entropy.

Arthur Eddington, The Nature of the Physical
World, 1928
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Section 1

More on the Second Law

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory October 31, 2013 4 / 18

http://www.maths.adelaide.edu.au/matthew.roughan/Lecture_notes/InformationTheory/
http://www.maths.adelaide.edu.au/matthew.roughan/Lecture_notes/InformationTheory/


The second law of thermodynamics

In a closed system, entropy cannot decrease.

An operation is dissipative if it turns useful forms of energy into
useless ones, such as heat energy

Arrow of time implicit in this
I most physical laws are reversible

F they don’t have a “natural” direction for time
F you couldn’t tell if a “video” of physical events at the microscopic level

was running forward or backwards

I yet most macroscopic processes are not
F largely due to the 2nd law

I 2nd law creates idea of causality?
F one things in “caused” by another in linear time
F our consciousness perceives it that way because we are also subject to

the second law
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Information Theory

More on the Second Law

The second law of thermodynamics

Entropy is guaranteed not to decrease, but stays equal only in highest
state of disorder, so it effectively increases.

Weak-nuclear force can violate time symmetry very rarely.

Some problems

Large-scale Universe
I big-bang

F where does local organization come from?

I heat death might be OK, but big crunch reverses it
F so long-term entropy works out the same?

Black holes have no hair
I if black holes evaporate (Hawking’s radiation)
I what happens to information that drops into a black hole?
I so black holes have entropy

SBH =
kBA

4`2P

I where
F A is the area of the event horizon
F `P is the Plank length
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More on the Second Law

Some problems



The Second Law and Markov Chains

Model an isolated system as a Markov chain
I transitions according to physical laws governing the system
I future of system independent of past (except through current state)

2nd law (in naive form) doesn’t work
I entropy can decrease
I e.g., consider a case where the

F initial distribution is uniform (max entropy)
F stationary distribution is non-uniform

I we could just chalk this up to Markov chains not really being covered
by thermodynamics, but

Four different interpretations of 2nd law [CT91, pp.34-36]
1 relative entropy decreases with n
2 relative entropy decreases RE stationary distribution
3 entropy increases if the stationary distribution is uniform
4 conditional entropy increases with n
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More on the Second Law

The Second Law and Markov Chains

The problem (it seems to me) arises because a Markov chain is often a

representation of a system that is closed in principle (e.g., people might

not enter or leave), but not in the strict sense of thermodynamics.

The Second Law and Markov Chains: 1

For the Markov chain discussed above

Consider relative entropy D(µn‖µ′n) where
1 µn and µ′

n are two probability distributions at time n
2 µn+1 and µ′

n+1 are corresponding distributions at time n + 1

Then
D(µn‖µ′n) ≥ D(µn+1‖µ′n+1)

1 relative entropy decreases with time

Think of D(·) as a distance
1 the two probability distributions get closer together as the system

evolves
2 remember D(·) has a lower-bound of zero, so a limit must exist
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Information Theory

More on the Second Law

The Second Law and Markov Chains: 1

Derivation just uses the chain rule for relative entropy.



The Second Law and Markov Chains: 2

For the Markov chain discussed above

Consider D(µn‖µ)
1 µn is a probability distributions at time n
2 µ is the stationary distribution

Then
D(µn‖µ) ≥ D(µn+1‖µ)

1 relative entropy decreases with time

Think of D(·) as a distance
1 the probability distribution gets closer and close to the stationary

distribution
2 remember D(·) has a lower-bound of zero, so a limit must exist
3 if the stationary distribution is unique, the limit is 0
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Information Theory

More on the Second Law

The Second Law and Markov Chains: 2

The Second Law and Markov Chains: 3

For the Markov chain discussed above
1 consider the case where the stationary distribution is uniform

We can write the relative entropy as

D(µn‖µ) = log |Ω| − H(µn)

1 We know D(µn‖µ) can’t increase
2 so H(µn) can’t decrease

So for this case H(µn) ≤ H(µn+1)
1 this makes sense for physical systems
2 in equilibrium, microstates are equally likely (uniform stationary

distribution)
3 so this kind-of handles the transition to equilibrium

A nice example is a shuffle
I a crude idea of a shuffle is a random permutation, with ultimately

uniform distribution of all cards
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Information Theory

More on the Second Law

The Second Law and Markov Chains: 3

Theorem
A Markov chain will have uniform stationary distribution iff its probability
transition matrix is doubly stochastic, i.e., all its rows and columns sum
to one.

In some sense this equates to reversible physical processes, such as often

considered in thermodynamics, as in this case, the transpose of the

transition matrix is also a valid transition matrix.



The Second Law and Markov Chains: 4

For the Markov chain discussed above
1 make the additional assumption that it is stationary
2 consider the conditional entropy H(Xn|X1)

H(Xn|X1) ≤ H(Xn+1|X1)

The conditional uncertainty about the future increases
I we know less and less about the state, the further we try to see into

the future
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Information Theory

More on the Second Law

The Second Law and Markov Chains: 4

We didn’t require stationarity of the Markov chain before, except
implicitly in talking about stationary distributions.

Proof follows from conditioning reducing entropy, and then the Markov

property, or more simply from the data processing inequality.

Section 2

Landauer’s Principle
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Landauer’s Principle

Any calculation must involve some exchange of energy
I so there is a lower bound on per bit calculation
I any logically irreversible manipulation (e.g., erasure of a bit) is

accompanied by an increase in entropy

Landauer limit
I minimum possible energy required to change one bit

= kBT ln 2

where kB =Boltzmann’s constant and T is temperature (in K)
I modern computers use millions of times this energy

Practical lower bound given by T = 3K cosmic background radiation
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Landauer’s Principle

Landauer’s Principle

k ' 1.38× 1023J/K

Explanation

Imagine a hypothetical efficient computer
I never wastes energy
I it’s isolated (no energy comes in or out)
I any

F logical state (binary bits in computer) is a macrostate
F represented by some number of microstates (physical states of

electrons, magnetic particles, etc.)

I we can imagine either
F keep track of logical state
F of not

Irreversible computation
I two or more logical states map to a single state
I not invertible
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Explanation

(1) Don’t keep track of logical state

Irreversible calculation implies that the number of possible logical
states of the computer decreases

I in erasing a bit, we have reduced no. of states by factor of 2
I All else equal (equal probabilities)

H(X ) = log2 |Ω|

F so if we reduce state space by factor of two
F H(X ) is reduced by 1 bit

But entropy can’t decrease in isolated system
I there must be some other increase
I number of physical microstates corresponding to the macrostate (or

the logical bits), must have increased to compensate
I energy is dissipated into heat
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Information Theory

Landauer’s Principle

Explanation

Explanation

(2) Keep track of logical state

Irreversible calculation doesn’t change the number of possible states
(just the actual state)

But, from previous argument the number of microstates increased

So from the point of view of the computer’s user
I entropy just increased by 1 bit
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Importance
I logical (information) operations have real physical consequence

All this is a bit on the speculative side
I some claims it is just wrong [Ben03, She01]
I but it does fix some problems, e.g.,

F Maxwell’s demon

2012 there is a claim that the release of heat has been measured
http://spectrum.ieee.org/computing/hardware/

landauer-limit-demonstrated

Maybe we need “reversible” computing

Some other related issues
I Bekenstein bound on entropy/information that can be contained within

finite region of space
I Black hole information paradox
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Further reading I

Charles H. Bennett, Notes on landauer’s principle, reversible computation and
maxwell’s demon, arXiv:physics/0210005v2, 2003,
http://arxiv.org/abs/physics/0210005.

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
and Sons, 1991.

Neri Merhav, Information theory and statistical physics – lecture notes, arXiv:
1006.1565v1, June 2010.

Orly R. Shenker, Logic and entropy, http://philsci-archive.pitt.edu/115/,
2001.
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