Information Theory and Networks

Lecture 33: Information Theory, the Universe and Everything

Matthew Roughan

<matthew.roughan@adelaide.edu.au>

http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/InformationTheory/

> School of Mathematical Sciences, University of Adelaide

> > October 31, 2013

Part I

Information Theory, the Universe, and Everything

If you take a pack of cards as it comes from the maker and shuffle it for a few minutes, all traces of the original systematic order disappears. The order will never come back however long you shuffle. There is only one law of nature — the second law of thermodynamics — which recognises a distinction between the past and the future. Its subject is the random element in a crowd. A practical measure of the random element which can increase in the universe but never decrease is called entropy.

Arthur Eddington, The Nature of the Physical World, 1928

3 / 18

Section 1

More on the Second Law

The second law of thermodynamics

In a closed system, entropy cannot decrease.

- An operation is dissipative if it turns useful forms of energy into useless ones, such as heat energy
- Arrow of time implicit in this
 - most physical laws are reversible
 - ★ they don't have a "natural" direction for time
 - you couldn't tell if a "video" of physical events at the microscopic level was running forward or backwards
 - yet most macroscopic processes are not
 - ★ largely due to the 2nd law
 - 2nd law creates idea of causality?
 - ★ one things in "caused" by another in linear time
 - ★ our consciousness perceives it that way because we are also subject to the second law

Some problems

- Large-scale Universe
 - big-bang
 - where does local organization come from?
 - heat death might be OK, but big crunch reverses it
 - ★ so long-term entropy works out the same?
- Black holes have no hair
 - if black holes evaporate (Hawking's radiation)
 - what happens to information that drops into a black hole?
 - so black holes have entropy

$$S_{BH} = \frac{k_B A}{4\ell_P^2}$$

- where
 - ★ A is the area of the event horizon
 - ★ ℓ_P is the Plank length

6 / 18

- Model an isolated system as a Markov chain
 - transitions according to physical laws governing the system
 - future of system independent of past (except through current state)
- 2nd law (in naive form) doesn't work
 - entropy can decrease
 - e.g., consider a case where the
 - ★ initial distribution is uniform (max entropy)
 - * stationary distribution is non-uniform
 - we could just chalk this up to Markov chains not really being covered by thermodynamics, but
- Four different interpretations of 2nd law [CT91, pp.34-36]
 - 1 relative entropy decreases with *n*
 - Prelative entropy decreases RE stationary distribution
 - entropy increases if the stationary distribution is uniform
 - \bullet conditional entropy increases with n

- For the Markov chain discussed above
- Consider relative entropy $D(\mu_n || \mu'_n)$ where
 - **1** μ_n and μ'_n are two probability distributions at time n
 - 2 μ_{n+1} and μ'_{n+1} are corresponding distributions at time n+1
- Then

$$D(\mu_n || \mu'_n) \ge D(\mu_{n+1} || \mu'_{n+1})$$

- 1 relative entropy decreases with time
- Think of $D(\cdot)$ as a distance
 - the two probability distributions get closer together as the system evolves
 - 2 remember $D(\cdot)$ has a lower-bound of zero, so a limit must exist

- For the Markov chain discussed above
- Consider $D(\mu_n || \mu)$
 - **1** μ_n is a probability distributions at time n
 - \mathbf{Q} μ is the stationary distribution
- Then

$$D(\mu_n \| \mu) \ge D(\mu_{n+1} \| \mu)$$

- relative entropy decreases with time
- Think of $D(\cdot)$ as a distance
 - the probability distribution gets closer and close to the stationary distribution
 - 2 remember $D(\cdot)$ has a lower-bound of zero, so a limit must exist
 - if the stationary distribution is unique, the limit is 0

- For the Markov chain discussed above
 - Occupant to the case where the stationary distribution is uniform
- We can write the relative entropy as

$$D(\mu_n \| \mu) = \log |\Omega| - H(\mu_n)$$

- **1** We know $D(\mu_n || \mu)$ can't increase
- 2 so $H(\mu_n)$ can't decrease
- So for this case $H(\mu_n) \leq H(\mu_{n+1})$
 - 1 this makes sense for physical systems
 - in equilibrium, microstates are equally likely (uniform stationary distribution)
 - 3 so this kind-of handles the transition to equilibrium
- A nice example is a shuffle
 - a crude idea of a shuffle is a random permutation, with ultimately uniform distribution of all cards

- For the Markov chain discussed above
 - make the additional assumption that it is stationary
 - ② consider the conditional entropy $H(X_n|X_1)$

$$H(X_n|X_1) \leq H(X_{n+1}|X_1)$$

- The conditional uncertainty about the future increases
 - we know less and less about the state, the further we try to see into the future

Section 2

Landauer's Principle

Landauer's Principle

- Any calculation must involve some exchange of energy
 - ▶ so there is a lower bound on per bit calculation
 - ▶ any logically irreversible manipulation (e.g., erasure of a bit) is accompanied by an increase in entropy
- Landauer limit
 - minimum possible energy required to change one bit

$$= k_B T \ln 2$$

where k_B =Boltzmann's constant and T is temperature (in K)

- modern computers use millions of times this energy
- ullet Practical lower bound given by T=3K cosmic background radiation

Explanation

- Imagine a hypothetical efficient computer
 - never wastes energy
 - it's isolated (no energy comes in or out)
 - any
 - ★ logical state (binary bits in computer) is a macrostate
 - represented by some number of microstates (physical states of electrons, magnetic particles, etc.)
 - we can imagine either
 - ★ keep track of logical state
 - ★ of not
- Irreversible computation
 - two or more logical states map to a single state
 - not invertible

Explanation

- (1) Don't keep track of logical state
 - Irreversible calculation implies that the number of possible logical states of the computer decreases
 - ▶ in erasing a bit, we have reduced no. of states by factor of 2
 - All else equal (equal probabilities)

$$H(X) = \log_2 |\Omega|$$

- ★ so if we reduce state space by factor of two
- ★ H(X) is reduced by 1 bit
- But entropy can't decrease in isolated system
 - there must be some other increase
 - number of physical microstates corresponding to the macrostate (or the logical bits), must have increased to compensate
 - energy is dissipated into heat

Explanation

- (2) Keep track of logical state
 - Irreversible calculation doesn't change the number of possible states (just the actual state)
 - But, from previous argument the number of microstates increased
 - So from the point of view of the computer's user
 - entropy just increased by 1 bit

- Importance
 - logical (information) operations have real physical consequence
- All this is a bit on the speculative side
 - some claims it is just wrong [Ben03, She01]
 - but it does fix some problems, e.g.,
 - ★ Maxwell's demon
- 2012 there is a claim that the release of heat has been measured http://spectrum.ieee.org/computing/hardware/
- Maybe we need "reversible" computing
- Some other related issues
 - Bekenstein bound on entropy/information that can be contained within finite region of space
 - Black hole information paradox

Further reading I

Charles H. Bennett, *Notes on landauer's principle, reversible computation and maxwell's demon*, arXiv:physics/0210005v2, 2003, http://arxiv.org/abs/physics/0210005.

Thomas M. Cover and Joy A. Thomas, *Elements of information theory*, John Wiley and Sons, 1991.

Neri Merhav, Information theory and statistical physics – lecture notes, arXiv: 1006.1565v1, June 2010.

Orly R. Shenker, *Logic and entropy*, http://philsci-archive.pitt.edu/115/, 2001.