
Introduction to Matlab

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

Applied Mathematics, School of Mathematical Sciences
The University of Adelaide

April 11th, 2010

i

c© 2010 School of Mathematical Sciences
The University of Adelaide
All rights reserved

ii

Preface

These notes grew out of a set being used for a course called Scientific Computing. In that course,
three programming languages were taught: Excel, MATLAB and C, with some emphasis on com-
parison of the advantages, disadvantages, and commonalities between the three. This set of notes
was drawn from the MATLAB component of that course, as we often have a need to teach new
students some elements of MATLAB , or to refresh their memory. However, as it was only one
component of a larger course, these notes are far from complete, and while they may comprise a
suitable set for a student just starting MATLAB , there are plenty of other books and on-line refer-
ence materials that are more substantial. Also, a reader maynotice comparisons with Excel or C
appearing at various places, due to the structure of the original course. Despite, this, these notes
should contain a reasonable introduction to programming (specifically programming for scientific
or numerical purposes) in MATLAB .

Matthew Roughan

Contents

1 MATLAB Fundamentals 1

1.1 Reference books for MATLAB . 1

1.2 Getting started .. . 2

1.3 How a program works . 2

1.4 Variables . 3

1.5 Script M-files . 5

1.6 Useful features in the MATLAB window . 6

1.7 Punctuation! .. 7

1.8 Programming style .. 7

2 Vectors and matrices 9

2.1 Initialising row vectors: explicit lists 9

2.2 Initialising row vectors: the colon operator : 10

2.3 Column vectors .10

2.4 Transposing vectors 10

2.5 Concatenation .. 11

2.6 Subscripts .11

2.7 Matrices . 12

2.8 MATLAB and matrices . 13

2.9 Solving linear equations with MATLAB . 15

2.10 Strings .16

2.11 Multi-dimensional arrays 17

3 MATLAB as a big calculator 19

3.1 Numbers . 19

3.2 Operators, expressions and statements 20

iii

iv CONTENTS

3.3 Precedence of operators 23

3.4 Vectorisation of formulae 24

4 Input/Output 27

4.1 disp . 27

4.2 Theformat statement . 28

4.3 fprintf . 28

4.4 Advanced I/O . 32

5 Program flow control 35

5.1 Making decisions withif . 35

5.2 Repetition withfor . 41

5.3 Non-deterministic repetition withwhile . 48

5.4 Programming style .. 50

5.5 Other MATLAB statements . 51

6 Commonly used functions and variables 53

6.1 Constants . 53

6.2 Elementary Mathematical Functions 54

6.3 Simple Vector/Matrix functions 55

6.4 Set functions .56

6.5 Test functions .. 56

6.6 String functions .. . 56

6.7 Dates and times .57

6.8 Utility functions 57

6.9 More information .. 58

7 Graphics 59

7.1 Basic two-dimensional plots 59

7.2 Decorating the figure .. . 59

7.3 Multiple plots .. 64

7.4 Printing graphs .. 67

7.5 Colours . 68

7.6 Advanced two-dimensional plots 69

7.7 Three-dimensional plots 74

CONTENTS v

8 Defining Functions with M-files 79

8.1 Some examples . 79

8.2 The basic rules for function files 81

8.3 Function names as input variables withfeval 86

8.4 Inline and anonymous functions 87

8.5 Recursion . 87

9 0-1 vectors 93

9.1 Combining logical and numerical vectors 94

9.2 Additional tests .. . 98

9.3 Thefind function . 98

10 The Optimization Toolbox 101

10.1 Linear Programming .. . 101

10.2 Why use MATLAB for optimization . 103

11 MATLAB Roundup 105

11.1 More stuff .105

11.2 Limitations .. 105

11.3 Summary . 106

vi CONTENTS

Chapter 1

MATLAB Fundamentals

We can characterise MATLAB as follows. It is

• Imperative: we tell the computer what to do.

• Procedural: a program is written as a series of tasks (procedures) to do ina specified order.

• High-level: MATLAB is written in a high-level programming language which resembles a
mixture of English and mathematics. The exact form has to differ from both because it needs
to be more precise than English (computer are fast but stupid), and because a typewriter
keyboard (which we will use for entering programs) has limited keys.

• Interpreted: MATLAB uses an interpreter to translate our high-level commands into some-
thing the machine can do. It does the translation (almost) onthe spot when we type a com-
mand. A MATLAB interpreter exists for most common computing environments, including
Windows, MacOS, and Linux, so MATLAB code is very portable (if it is written carefully).

1.1 Reference books forMATLAB

This course draws from the following text which is availablein the Reserve section of the Barr
Smith library.

1. Hahn, B.D.EssentialMATLAB for Scientists and engineers(Arnold, London) 1997/2002/2007.

The 1997 version relates to MATLAB 4, 2002 to MATLAB 6.1 and 2007 to MATLAB 7.2. Our
Labs now use MATLAB version 7. However, most of this course is not dependent on the version
of MATLAB used.

Matlab has extensive built in help, either through typinghelp followed by a topic or func-
tion, or through the MATLAB menus. There is also extensive on-line help on the Internet,via the
Mathworks web page, or other 3rd party tutorials.

The Uni book shop can order in a student version of MATLAB for less than $200, but you do
not need this to complete the course. There is also a free program very similar to MATLAB called

1

2 CHAPTER 1. MATLAB FUNDAMENTALS

octave , but it does have some differences particularly in the user interface, and so we do not
recommend it for this course, though you may wish to use it in the future.

1.2 Getting started

Invokingmatlab produces a MATLAB window similar to Figure 1.1.

Figure 1.1: Matlab window

The>> is the MATLAB prompt. Initially you will enter commands at this prompt butlater we
will see how to write and use. m files using a text editor.

For an overview of the help facility typehelp help . For a menu-driven graphical user
interface of the help facility, typehelpwin , or use the HELP menu. For help with a specific
command typehelp command name wherecommand name is the name of the command
with which you seek help.

To exit MATLAB typequit or use the FILE menu.

1.3 How a program works

Consider the following piece of MATLAB code, which we might type at the MATLAB prompt.

1.4. VARIABLES 3

balance = 1000;
rate = 0.09;
interest = rate * balance;
balance = balance + interest;
disp(’New balance:’)
disp(balance)

Typing this in the MATLAB command window we get the following output:

New balance:
1090

The statements in our program are interpreted by MATLAB as

1. assign the value 1000 to the variablebalance .

2. assign the value 0.09 to the variablerate .

3. multiply the value ofrate by the value ofbalance and assign the answer tointerest .

4. display (in the command window) the message given in single quotes.

5. display the value ofbalance .

MATLAB processes the statements inorder from the top down. When the program finishes the
variables used will have the values

balance: 1090
interest: 90
rate: 0.09

1.4 Variables

A variable is a programming structure we define to hold a value. It is called a variable because we
can change the value it holds. A variable is created by assigning a value to it. For example

a=98

Any operations that assign a value to a variable automatically create the variable if needed, or
overwrites its current value if it already exists. If the right-hand side of an assignment operation
refers to a non-existent variable you will get the error message

Undefined function or variable

MATLAB allows us to give a variable a value of a string, number, orarray (a synonym for a vector
or matrix). In fact, by default all variables are arrays. Scalars are just stored as1 × 1 arrays.

4 CHAPTER 1. MATLAB FUNDAMENTALS

1.4.1 Variable name

A variable name should follow these rules:

1. it may consist of only the lettersA–Z anda–z , the digits0–9, and the underscore ’’.

2. it must start with a letter.

3. it must be shorter than 63 characters long (seenamelengthmax).

4. it must not be a reserved keyword (e.g.for , while , function , or if). We can get a list
of keywords by callingiskeyword .

If in any doubt, we can distinguish valid variable names using the functionisvarname(variable) .

Examples of valid variables names:r2d2 andpay day .

Examples of invalid variable names:pay-day , 2a , name$, or 2a .

It is good programming style to avoid using common functionsas variables, for examplesin ,
or cos . We also prefer to use variables that are meaningful, ratherthan abstract variables likex .

1.4.2 Case sensitivity

MATLAB is case sensitiveso it distinguishes between upper and lower-case letters. So BALANCE,
Balance andbalance are three different variables. This is also true of functionnames.

1.4.3 Class/Type

Each variable has aClass (often called a type in other programming languages). The default
type in MATLAB is an array (a matrix or a vector) ofdouble precision floating pointnumbers, but
typicallyMATLAB assigns the appropriate type to a variable when it is first defined. The type will
also automatically change as required throughout a program, so we don’t need to explicitly define
the type of a variable, but we may need to know the type, or change it.

The commandwhos shows a list of the variables we have defined, along with theirsize (how
big the array is). For example, given the code above, and depending on the precise version of
MATLAB you’re using you should end up with something like

Name Size Bytes Class

balance 1x1 8 double array
interest 1x1 8 double array
rate 1x1 8 double array

Each variable occupies 8bytesof storage (64 bits). The variables are scalars, but MATLAB represents
scalars as a1 × 1 matrix, hence the values in theSize column, and the termarray at the end.
The termdouble refers to the fact these are double precision floating point arrays.

The most important variable classes in MATLAB :

1.5. SCRIPT M-FILES 5

• double precision floating point: numbers are the default way of representing real numbers.
Eachdouble uses 8 bytes or memory. MATLAB uses the IEEE Standard 754 for its floating
point representation.

• logical: or Boolean variables represent the values TRUE and FALSE, using 1 and 0 respec-
tively. We can define a logical variable using logical operators like==. In principle a logical
variable needs only 1 bit, but MATLAB stores each in 1 byte.

• char: represents a ASCII tex character, i.e., the typical typewriter letters. An array of these
forms a string (a piece of text). We can define a string using single quotes, e.g.

the_string = ’Hello, world!’;

Quotes may be included in a string by repeating them twice.
the_string = ’Hello, ’’world’’!’;

There are other types in MATLAB , e.g. single , int8 , uint16 , function_handle , etc.,
but these are less commonly used. Also, one of the pleasures of programming in MATLAB is that
one typically doesn’t have to worry about the type of a variable as MATLAB handles these for
you, unless you have a specific requirement. There are also more advanced data types such as
cell andstruct that are outside the scope of this course. MATLAB also allows more object
oriented classes such as<class_name> , again outside the scope of this course.help class
can provide more details.

In MATLAB we can often ignore a variable’s class and allow MATLAB to work out the details
for us, but there are some issues you need to be aware of.

• Double-precision floating point numbers try to represent a real number, but they do NOT do
this to arbitrary precision. This allows numerical errors in calculations, and if one does not
program carefully these can become a problem, The classic mistake is to test whether two
floating points numbers are equal by writing, for instancex == y . This may fail because
the two numbers are very slightly different. For instance, in MATLAB sin(π) 6= 0, because
MATLAB only stores an approximate value ofπ. We will later see how to do this correctly.

• Strings are not a “scalar” variable, but rather are represented as an array of characters. This
is sometimes important when operating on them.

1.5 Script M-files

A M ATLAB program saved from a text editor with the.m extension is called ascript file. As an
example, let’s save our earlier interest program in a file with the namecalc interest.m .

balance = 1000;
rate = 0.09;
interest = rate * balance;
balance = balance + interest;
disp(’New balance:’)
disp(balance)

6 CHAPTER 1. MATLAB FUNDAMENTALS

To run the programcalc interest we simply enter the name

calc_interest

at the MATLAB prompt, and each command in the file will be executed in order.A script file may
be listed in the command window with the commandtype , e.g.

type calc_interest

and MATLAB would output the above.m file.

MATLAB has a built in editor that we can use via the MATLAB menus. Go to FILE-> NEW to
create a new.m file, or FILE-> OPEN to edit an existing file. The editor has many useful features,
e.g. it highlights different parts of the code in different colours to help identify, e.g. comments. It
puts line numbers next to the lines of code to aid in debugging, and it has built in debugging tools.
Other text editors also support some or all of these features, but for the purposes of this course we
will use MATLAB ’s built in editor.

1.6 Useful features in theMATLAB window

The MATLAB window has some useful features. On the left-hand (by default) side the window
has sections allowing us to display the current Workspace, the current directory, and the command
history.

1.6.1 The Directory

One of the options we can display is the current directory (sometimes called a folder), showing a
list of the.m files we have created. We can also manage this directory, or change directories.

1.6.2 The Workspace

A fundamental concept in MATLAB is theworkspace. If we enter the commandwho we should
see a list of variables, for instance, given the previous examplewho would return

Your variables are:

balance interest rate

We can also see the workspace in the top left frame of the MATLAB window.

All variables you create during a session remain in the workspace until youclear them,
either individually, or ifclear is called by itself it clears the whole workspace.

The MATLAB window can also display a graphic of the workspace, showing alist of variables
their size, and a graphic representation of what type of variable they are.

1.7. PUNCTUATION! 7

1.6.3 Command history

The history contains a list of all of the commands we type. It is convenient for us to be able to
review this, but more importantly, we can repeat a command easily. The up-arrow on the keyboard
allows us to scroll back through these past commands. We can filter the command list by typing a
few letters at the command prompt and then using the up-arrow. MATLAB will then scroll through
commands that match the letters we typed. This can save us a lot of typing.

1.7 Punctuation!

By default, MATLAB has one command per line. When you hit the enter or return key to start a
new line, MATLAB interprets the current command. In a.m file, we usually have one command
per line of the file. So a single line is like a “sentence” in English, but we don’t need to put a full
stop at the end.

In MATLAB , various symbols can alter this behaviour.

• , We can put more than one command on a line with a comma, e.g.
x=1, y=x

The commands are executed in order from left to right.

• ... If we have a complicated formula that won’t easily fit on one line, we can spread it
over two lines using three full stops, e.g.,

x = (1 + 2 + 3 + 4 + 5 ...
+ 6 + 7)

• % The percentage sign is use to denote acomment. Comments are text in the program
that has no effect on the program itself. In MATLAB , everything on a line that appears after
the % sign is ignored. Comments are very useful for making code easier to understand, e.g.,

g = 9.8 % the gravitational constant in m/sˆ2

• ; By default, when we enter a MATLAB command, the result of that command will
appear in the command window. If we wish to suppress this behaviour we end the line with
a semi-colon “;”, and the command will execute silently. Omitting the semi-colons can save
us typingdisp , so we only really usedisp for teaching purposes.

1.8 Programming style

It is extremely important for you to develop the art of writing programs which are laid out well and
with all the logic described clearly. Good comments are not fun to write, and are often omitted,
or done carelessly. However, good comments make a program more easily maintainable, and
reusable. Failing to comment code may seem to save time, but generally costs companies a great
deal more than it saves.

In programming MATLAB we expect you to

8 CHAPTER 1. MATLAB FUNDAMENTALS

• Put a comment at the start of all .m files explaining what the file does, who wrote it and
when, and some details of any inputs, outputs, or other assumptions. It should also list how
it relates to any other programs. Often it is useful to provide a reference to the source of an
algorithm, or a set of data.

• Variable names should be meaningful. For exampleinterest_rate is preferable tox .
Where possible, match variable names to the reference text.

• Variable names should not overlap common functions.

• Even where variable names are chosen well, it is useful to accompany a variable definition
with a comment. Sometimes this can help understand details of the variable (for instance,
we might have two interest rates in our program and wish to help a reader understand which
is which). Another use for comments is to specify units, e.g.

g = 9.8 % the gravitational constant in m/sˆ2

• Comments can be otherwise used to highlight key steps in an algorithm, or otherwise clarify
code.

• Spaces can be used in expressions to make them easily readable, e.g. on either side of the
equal signs as inx = [1,2,3] . We can also use brackets to make complex expressions
easier to understand.

• Blank lines can be used to separate different parts of the program. Another convention is to
use a row of % signs to separate major segments of code.

• Don’t “hardwire” values. Where-ever you have a value that you use more than once in
a program, you should assign that value to a variable, and usethe variable. This makes
maintenance much easier as you will only have to change the value in one place to update
the program.

You may want to develop your own style but it is important to pay attention to readability. A good
approach is to imagine another person who has to read your code, and modify it. Then apply the
principle “Do unto others as you would have done to you.” Do the things that you would appreciate
when you are reading other peoples’ code.

Perhaps a more compelling maxim comes in the form of a quote from Damien Conway (Perl
Best Practices)

Always code as if the guy who ends up maintaining your code will be a violent psy-
chopath who knows where you live.

Chapter 2

Vectors and matrices

A matrix is a rectangular object (e.g. a table) consisting ofrows and columns. A vector is a special
type of matrix having only one row or column. Vectors are alsocommonly referred to aslists or
arrays. We’ll postpone a discussion of matrices until later. For the moment we’ll concentrate on
vectors, starting withrow vectors.

2.1 Initialising row vectors: explicit lists

To get started with entering vectors into MATLAB we’ll try the following. We can define a row-
vector directly using square brackets.

x = [1 3 0 -1 5];

We have created a vector (or list) with fiveelements. To see how MATLAB displays a vector we
can enter the commanddisp(x) , though omitting the semicolon will have the same effect.

If we enter the commandwhos we’ll see that, under the headingsize , x is 1x5 which means
that it has 1 row and 5 columns. The functionsize will return the size of a matrix as a1x5 array.
We can also directly obtain the length of our vector usinglength(x) , which will be 5.

We can also put commas instead of spaces between the elementswhen defining a vector

a = [5,6,7]

which has exactly the same effect as leaving spaces, but may be substantially easier to read if we,
for instance, put more complicated expressions into our array definition, e.g,

a = [5+1, 6-2 * 3, sin(2 * pi)]

In general the definition of a vector can involve a MATLAB expression perhaps even involving
other variables.

We can also define an empty array, e.g.

x = []

The empty array can be useful in some circumstances, e.g., where we need to have a variable
defined, but don’t want to put anything in it yet. If we enter and then enterwhos we find that the
size ofx is given as 0 by 0. This means thatx is defined but it has no value or size.

9

10 CHAPTER 2. VECTORS AND MATRICES

2.2 Initialising row vectors: the colon operator :

A vector can also be generated with thecolon operator. If we enter the following:
x = 1:10

we obtain a vector with elements that are the integers (1,2,3,4,5,6,7,8,9,10). The command
x = 1:0.5:4

produces a vector with the elements (1, 1.5, 2, 2.5, 3, 3.5, 4)each of which increases in increments
of 0.5. The colons separate three values, and themiddlevalue is the increment. Similarly

x = 10:-1:1

produces a vector with elements (10,9,8,7,6,5,4,3,2,1) since the increment is negative. Another
example is

x = 1:2:6

In this case the elements are 1,3,5. Note that when the increment is positive but not equal to 1 the
last element is not allowed to exceed the value after the second colon.

2.3 Column vectors

We can create a column vector by reusing the semi-colon (thisis a different use from when we end
a line with a semi-colon). We simple define a column vector by

x = [1; 2; 3]

which defines the 3x1 column vector

x =

1
2
3

2.4 Transposing vectors

We can transpose between row and column vectors using the a single quote, orapostrophe’ , e.g.,
when we enter

y = [1 4 8]’

we get the column vector

y =

1
4
8

with 3 rows and 1 column. Likewise,
y = [4; 5; 1]’

Results in
y = (4, 5, 1).

[Warning: actually this operation gives the conjugate transpose. Replace 1 by i in this example
and inspect the output. For simple transpose use.’ rather than a simple apostrophe.]

2.5. CONCATENATION 11

2.5 Concatenation

Concatenation basically means sticking one array on the endof another. We can concatenate two
vectors by placing them within square brackets, e.g. if we take

a = [1 2 3]
b = [4 5]
c = [a -b]

Thenc = (1, 2, 3, 4, 5). Or for column vectors
a = [1; 2]
b = [4; 5]
c = [a; -b]

Then

c =

1
2
4
5

2.6 Subscripts

We can refer to particular elements of a vector by means ofsubscripts.

1. Set up the vector
r = [2 4 8 16 32 64 128]

2. The command
r(3)

gives the third element of the vectorr (the value is 8). The number 3 is thesubscript.

3. The command
r(2:4)

will give thesecond, third andfourthelements of the vectorr , i.e., the vector(4, 8, 16).

4. The command
r(1:2:7)

returns the odd terms(2, 8, 32, 128).

5. We can use an empty vector toremoveelements from a vector. The command
r([1 7 2]) = []

will remove the elements 1,7 and 2, so nowr will look like

r = (8, 16, 32, 64).

6. There is a special termend we can use to mean the last element of an array, e.g. if
r = [2 4 8 16 32 64 128]

Thenr(5:end) would be the array(32, 64, 128).

Warning: MATLAB subscripts start at 1 (the integer 1 means the 1st element of the array).
In C, subscripts start at 0. This is a very common source of errors for people who have to
write code in both.

12 CHAPTER 2. VECTORS AND MATRICES

2.7 Matrices

A matrix may be thought of as a table consisting of rows and columns. We enter a matrix just as
we did for a vector, using a semi-colon to indicate the end of arow. The statement

a = [1 2 3 ; 4 5 6]
results in

a =
1 2 3
4 5 6

A matrix may be transposed in the same way as for a vector. An apostrophe will interchanging
rows and columns, e.g., the statementa’ results in

ans =
1 4
2 5
3 6

A matrix can also be constructed from column vectors of the same length by concatenation. The
statements

x = 0:30:180
table = [x’ sin(x * pi/180)’]

concatenates the two column vectorsx andsin(x * pi/180)’ together into a7x7 matrix
table =

0 0
30.0000 0.5000
60.0000 0.8860
90.0000 1.0000

120.0000 0.8660
150.0000 0.5000
180.0000 0.0000

Subscripts work as expected. The element in theith row, andjth column, i.e., the(i, j)th
element of matrixA can be accessed usingA(i,j) . As before we can use vector subscripts to
extract a portion of the matrix. For instance

table([1 2 3], 2)

ans =
0

0.5000
0.8660

We can replace the whole possible range of an index using either 1:end , or even more simply
just : . For instance

table([1 2 3], :)

ans =
0 0

30.0000 0.5000
60.0000 0.8660

2.8. MATLAB AND MATRICES 13

2.8 MATLAB and matrices

One of the most powerful features of MATLAB is its ability to operate directly on matrices. For
instance, we can multiply all of the elements of a matrix by a scalar simply using the standard
multiplication operator∗. In the above example the functionsin acts on each element of the
column vector, returning a column vector whose elements aresine of x . We will discuss this
further in the following chapter, but some simple examples are

A = [1; 2; 3];
b = 3;
x = b * A;
y = b + A;

which will result in

x =

3
6
9

 y =

4
5
6

There are also special operators defined in MATLAB for performing matrix operators. A simple
example isx = [1, 2, 3].ˆ2 , where the.ˆ operator squares each element of the vector
giving x = (1, 4, 9). A more sophisticated example is given below.

Example: If a stone is thrown vertically upward with an initial speedu, its vertical displacement
s after timet has elapsed is given by the formula

s = ut − 1

2
gt2,

whereg is the acceleration due to gravity. Air resistance has been ignored. We would like to
compute the value ofs over a period of about13sec at intervals of0.1 seconds and to plot the
distance-time graph over this period. Our plan for this problem is as follows:

1. Get the data (g, u andt) into MATLAB .

2. Calculate the value ofs according to the formula.

3. Plot the graph ofs againstt.

The resulting program is

% Vertical motion under the action of gravity
g = 9.8; % acceleration due to gravity
u = 60; % initial velocity (metres/sec)
t = 0 : 0.1 : 13 ; % the time in seconds
s = u * t - g/2 * t.ˆ2 ; % vertical displacement in metres

plot(t, s)
title(’Vertical motion under gravity’)
xlabel(’Time’) , ylabel(’Vertical displacement’)
grid

14 CHAPTER 2. VECTORS AND MATRICES

0 2 4 6 8 10 12 14
-50

0

50

100

150

200
Vertical motion under gravity

Time

V
er

tic
al

 d
is

pl
ac

em
en

t

Figure 2.1: Vertical motion under gravity

The graphical output is shown in figure 2.1.

An additional constructor that is often useful when building matrices is themeshgrid func-
tion. It works as follows: take two vectorsx andy , of lengthsN andM respectively, and

[X, Y] = meshgrid(x, y);

will result in X andY that areN × M matrices, with the rows ofX the vectorx , and the columns
of Y are the vectorsy . Remember that MATLAB variables are case sensitive soX is a different
variable tox .

A simple example is the construction of a multiplication table much as we did in Excel. Use
the following commands

x = 1:12;
y = 1:12;
[X, Y] = meshgrid(x, y);
Table = X . * Y;

Now the variableTable will contain the multiplication table.

2.9. SOLVING LINEAR EQUATIONS WITHMATLAB 15

2.9 Solving linear equations withMATLAB

One of the most common uses for matrices is in solving a set of linear equations, e.g., we have
three variablesx1, x2, andx3 and three equations

3x1 + 2x2 + x3 = 2, (2.1)

x1 + x2 + 3x3 = 2, (2.2)

2x1 − x2 + 2x3 = 1. (2.3)

We can represent a set of such equations by

Ax = b,

where

A =

3 2 1
1 1 3
2 −1 2

 , x =

x1

x2

x3

 and b =

2
2
1

In MATLAB we can solve a set of equations such as this simply using

x = A \ b

WhenA is invertible, this is equivalent tox = A−1
b computed using Gaussian elimination. We

can obtain the inverse ofA directly using

inv(A)

Note that whenA is not invertible, or non-square MATLAB ’s behaviour is more complex. Also,
it is possible to have unexpected results if a matrix isill conditioned, e.g.,

A = [2 eps -eps; eps 1 1; -eps 1 1];
b = [2; eps + 2; -eps + 2];
x = A \ b

MATLAB will print a warning in this case saying

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 2.465190e-32.

We can obtain more information usinghelp mldivide .

16 CHAPTER 2. VECTORS AND MATRICES

2.10 Strings

Text can be stored in variables in MATLAB , and the result is usually called astring.The standard
way to create and assign a string to a variable is use single quotes, e.g.,

the_string = ’Hello, world!’;

Quotes may be included in a string by repeating them twice.

the_string = ’Hello, ’’world’’!’;

In the latter case,whos will tell us that the_string is a 1x15 array of characters taking 30
bytes.

Actually, a MATLAB string is an array of numbers, each storing the “Unicode” number for a
character in the string. Unicode consists of a repertoire ofabout 100,000 characters from most
world languages. The most commonly used encodings (in English) are ASCII characters. We can
write out a table of the printable ASCII characters,

ascii = [char(32:79); char(80:127)]
ascii =

!"#$%&’() * +,-./0123456789:;<=>?@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]ˆ_‘abcdefghijklmnopqrstuvwxyz{|}˜ˆ

For more information about ASCII see, for example,http://en.wikipedia.org/wiki/
ASCII . MATLAB stores the a numeric code associated with each character, sooperations such
asthe_string+1 will have unexpected results (it shifts us down the alphabetby one). We can
convert between a character array, and an array of double precision numbers using the conversion
functionschar() anddouble() .

A string is an array, and hence they may be concatenated just as other arrays, e.g.,

the_string = [’Hello, ’ ’world!’];

A typical string is just a row vector of characters, but we canform matrices of characters. There
can be problems, however, with such matrices. For instance,it is often appealing to interpret them
as a series of lines of text. In contrast to typical text, these are held in an array, and so each row
must be the same length. Also operations on these arrays (e.g. transpose) often have unexpected
results, so care must be taken. What is often needed is an actual array of strings, which can be
formed in MATLAB using acell array, but such arrays fall outside the scope of this course.

2.11. MULTI-DIMENSIONAL ARRAYS 17

2.11 Multi-dimensional arrays

MATLAB allows one to construct multi-dimensional arrays. Often this is simplest using standard
constructors of matrices, such asones , zeros , andrand , which allow for more than 2 input
parameters with a resulting multi-dimensional matrix, e.g.,

A = ones(3,2,4);

will return a 3 × 2 × 4 array. We can access its elements using, for instance,A(i,j,k) , and
size(A) will return the vector[3 2 4] . DisplayingA with thedisp function will return

(:,:,1) =
1 1
1 1
1 1

(:,:,2) =
1 1
1 1
1 1

(:,:,3) =
1 1
1 1
1 1

(:,:,4) =
1 1
1 1
1 1

where each group specifies a3 × 2 subarray, or which there are four.

18 CHAPTER 2. VECTORS AND MATRICES

Chapter 3

MATLAB as a big calculator

One of the key features of MATLAB is the ability to do complicated calculations. In some ways it
resembles a great big calculator, but its capabilities, andeven the rules for how calculations work
are rather different from your standard calculator.

3.1 Numbers

3.1.1 Writing numbers

Numbers can be represented in MATLAB in the usual decimal form, e.g.

1.2345 , -123 , .00001

A number may also be represented inscientific notation, e.g.1.2345 × 106 = 1, 234, 500 may be
represented in MATLAB as

1.2345e6

3.1.2 Numerical errors

As noted above, numbers are stored as double precision floating point variables, but this means
there will be small errors in some numbers. For instance, irrational numbers such as as1/3, π, or√

2 are not possible to represent exactly, but you may find errorseven in numbers that are exact,
e.g.1.1010101010101010101 will be stored as approximately1.1010101010101009944. Note that
when you use thedisp() function, you only see the value output to a fixed precision.

The function/variableeps tells us something about the spacing between floating point num-
bers. Used as a variable in the current version of MATLAB , eps = 2.220446049250313e-16 ,
which gives us difference between1 and the next largest number that can be represented in
MATLAB , but used as a function it can tells us a great deal more. Usehelp eps to find out
more information.

19

20 CHAPTER 3. MATLAB AS A BIG CALCULATOR

3.1.3 Special cases

There are two special cases of number in MATLAB : NaNandInf , standing forNot a Numberand
Infinity, respectively. MATLAB returns these when certain arithmetic rules (such as never divide
by zero) are ignored. For instance

1/0 = Inf
-1/0 = -Inf

0/0 = NaN
We should check if a number falls into these cases using the functionsisinf andisnan because,
by definitionNaN 6= NaN .

3.1.4 Complex numbers

It is very easy to handle complex numbers in MATLAB . The special values ofi and j stand for√
−1. We must be careful, however, because often programmers reassign these values. They can

be set back to
√
−1 using, e.g.,clear i . We can define a complex number by

z = 2 + 3 * i
The imaginary part of a complex number may also be entered without the asterisk, e.g.3i . All the
arithmetic operators (and most functions) work with complex number. For instance,+ adds the real
and imaginary components, respectively, while* performs standard complex multiplication. The
functionsreal(z) , imag(z) , conj(z) andabs(z) all have the obvious meanings. There
are also functionisreal to test if a number is real, or if its imaginary part is non-zero.

Note that imaginary numbers require storage of two double precision floating points numbers,
and hence require 16 bytes of storage. Also complex arithmetic involves more computation than
real arithmetic, so it is best not to use complex numbers unless needed.

3.2 Operators, expressions and statements

Let us start with some definitions. Anexpressionis a formula consisting of variables, numbers, op-
erators and function names. An expression is evaluated whenyou enter it at the MATLAB prompt,
e.g., to evaluate2π we enter

2 * pi
MATLAB ’s response is

ans =
6.2832

A statementdoes something. For instance, it might write something in the command window, plot
a figure, or assign a value to a variable, e.g.,

s = u * t - g / 2 * t.ˆ 2;
This is an example of anassignment statement. The value of theexpressionon the right isassigned
to the variable on the left.

Statements and expressions use operators as short hand for standard mathematical operations.
For instance= is used to assign a value to a variable. MATLAB has a large number of operators,
you can see a list by typinghelp ops . We will discuss some here.

3.2. OPERATORS, EXPRESSIONS AND STATEMENTS 21

Operation Algebraic form MATLAB

Addition a + b a+b
Subtraction a − b a-b
Multiplication a × b a* b
Right division a/b a/b
Exponentiation ab aˆb

Table 3.1: Arithmetic operations between two scalars

Operation MATLAB result
comparison x == y returns TRUE ifx andy are equal, and FALSE otherwise
comparison x > y returns TRUE ifx > y, and FALSE otherwise
comparison x >= y returns TRUE ifx ≥ y, and FALSE otherwise
comparison x < y returns TRUE ifx < y, and FALSE otherwise
comparison x <= y returns TRUE ifx ≤ y, and FALSE otherwise
comparison x ˜= y returns TRUE ifx is not equal toy, and FALSE otherwise
logical AND x & y returns TRUE ifx AND y are true, and FALSE otherwise
logical OR x | y returns TRUE ifx ORy are true, and FALSE otherwise
logical NOT ˜x returns TRUE ifx is FALSE, and FALSE otherwise

Table 3.2: Common logical operators.

3.2.1 Arithmetic operators

The evaluation of expressions is often achieved by means ofarithmetic operatorswhich are similar
to those we are familiar with in algebra. The arithmetic operations on twoscalar constants or
variables are shown in Table 3.1.

3.2.2 Logical operators

It is common that we wish to assign a logical, or Boolean valueto a variable, or otherwise use it
in an expression. The most used logical operators are shown in Table 3.2. There is also anxor
function where this is needed. There are a number of other logical operators (for instance bitwise
operators) that we will not consider here.

A common operation is comparing two numbers to see if they areequal. This is a common
source of confusion as there are two similar operators= and==. The former is anassignment
operator — it assigns the value of the expression on its right-hand side to the variable on the left-
hand side. The latter (the double equals sign) is the comparison operator, which tests whether two
values are equal. In preference to the comparisonx == y , we often use an operation such as
abs(x-y) < epsilon , whereepsilon is a small number. This allows for some errors in
the floating point representation of the numbers.

Finally, MATLAB also includes a number oftest functionsthat return TRUE if their inputs
satisfy certain conditions. A more complete table of such functions appears in Section 6.5, but note

22 CHAPTER 3. MATLAB AS A BIG CALCULATOR

that we need to use such a function (in particular the function strcmp) if we wish to compare
strings. The== comparison operator only works for numbers, not strings, because a string is really
an array not a single value.

3.2.3 Array operators

MATLAB has a large set of array (or matrix) operators. The standard arithmetic operators are
translated into their matrix equivalent, e.g., the matrix multiplicationAB would be writtenA * B
in MATLAB , and addition, subtraction, and logical operators all workon matrices by adding,
subtracting, or comparing their individual elements, respectively. Obviously, these operations
require matrices of the same size, or an error is returned.

An exception to the same size rule is that MATLAB also combines scalars and matrices in an
intuitive fashion. For instance takeA to be a matrix, andb a scalar (a1 × 1 matrix in MATLAB),
and then

• A + b means addb to each element ofA.

• A * b means multiplyb by each element ofA.

• Aˆb means take the matrixA times itselfb times, i.e.,A ∗ A ∗ · · · ∗ A. Obviously this can
only be done for a square matrix.

MATLAB also introduces a number of operators specific to matrices and vectors. These are based
on standard arithmetic operators, but preceded by a dot, e.g.,

• C = A . * B means form a matrixC whose(i, j) elementcij is given bycij = aij ∗ bij .

• C = A ./ B means form a matrixC whose(i, j) elementcij is given bycij = aij/bij .

• C = A.ˆB means form a matrixC whose(i, j) elementcij is given bycij = a
bij

ij .

The “dot” operators, e.g.,a. * b are calledelement-by-elementoperations because they are per-
formed element by element. For. * and./ to work, we needA andB to be the same size.

Consider the following simple example. Given,
a = [2 4 8];
b = [3 2 2];

then operator thearray productdenoted bya . * b is
[a(1) * b(1) a(2) * b(2) a(3) * b(3)] = [6 8 16]

In a similar waya./b gives element-by-element division. The exponential is
[2 3 4] .ˆ [4 3 1] = [16 27 4]

we find that theith element of the first vector is raised to the power of theith element of the second
vector. Note that if we replace one of the matrices with a scalarb, then MATLAB effectively creates
a new matrixB whose elementsbij = b, e.g.

2 .ˆ [4 3 2 1] = [16 8 4 2]
Other matrix operators we have already seen include the vector construction operators: , [and

] , the transpose operator’ , and; (for constructing column vectors). There is also a left-division
operator,\ , mentioned earlier.

3.3. PRECEDENCE OF OPERATORS 23

3.3 Precedence of operators

MATLAB has strict rules about which operations are performed first when several operations are
combined in an expression. These are called the precedence rules and are shown in Table 3.3.
When operators in an expression have the same precedence theoperations are carried out left to
right. Soa/b * c is evaluated as(a/b) * c and not asa/(b * c) .

Precedence Operator
1 Parentheses (brackets)
2 Transpose and Exponentiation
3 Unary plus and minus, logical negation
4 Multiplication and division
5 Addition and subtraction
6 colon :
7 AND &
8 OR |

Table 3.3: Precedence of standard operators. Operators of equal precedence are evaluated from
left to right.

The precedence rules are similar to those you are familiar with from standard algebra (paren-
theses, exponentiation, multiplication and division, andthen addition). However, in MATLAB ,
these rules apply to a range of operators, for instance, array multiplication has precedence5,
just as scalar multiplication; element-wise exponentiation .ˆ has the same precedence as the
scalar, and matrix exponentiation operatorˆ . Note that if part-way through evaluating an expres-
sion we would end up multiplying two incorrectly sized matrices when following the precedence
rules,MATLAB will return an error. No effort is made to interpret the senseof an expression.

In many programming languages there are two types of± symbols. The standard operator
combines (adds or subtracts) two operands, e.g.,a − b. Theunaryoperator acts on one operand,
e.g.,−a. The two types have different precedence. The other important difference in MATLAB ’s
precedence operators is that MATLAB has some unusual operators related to matrices. For in-
stance, consider the colon operator. The colon operator hasa lower precedence than addition as
the following shows. In

x = 1+1:5

the addition is carried out first, and then a vector with elementsx = 2, . . . , 5 is initialised. Compare
this with

x = 1+(1:5)

which results inx = 2, . . . , 6, because the brackets reorder the operations.

3.3.1 Parentheses and programming style

Parentheses, or brackets are always first in the precedence order. Hence, we can use brackets to
group operators into the order we desire. This is not just foruse in cases where the order needs to

24 CHAPTER 3. MATLAB AS A BIG CALCULATOR

be changed. Using brackets can often be useful even where theorder is already correct, because it
can make an expression much easier to read, and debug. As such, using brackets sensibly to make
complex expressions more readable is a part of good coding practice.

3.4 Vectorisation of formulae

Array operations can be used to evaluate a formula repeatedly for a large amount of data. Let’s
consider the following formula for calculating compound interest.

Example: An amount of moneyA is invested over a period ofn years with an annual interest
rate r. After n years we have an amountA(1 + r)n. Suppose we want to calculate the final
balances for investments of$750, $1000, $3000, $5000 and$11, 999 over ten years, with an annual
interest rate of9%. The following sequence of commands does the calculation byusing an array
operations on a vector which contains the initial investments:

format bank
A = [750 1000 3000 5000 11999];
r = 0.09;
n = 10;
B = A * (1+r)ˆn;
disp ([A’ B’])

The output is

750.00 1775.52
1000.00 2367.36
3000.00 7102.09
5000.00 11836.82

11999.00 28406.00

Notes:

1. format bank provides a two-decimal-place fixed format for currency.

2. In the statementB=A* (1+r)ˆn , the expression(1+r)ˆn is evaluated first because expo-
nentiation has a higher precedence than multiplication. This is a scalar operation.

3. After that the array operation between the vectorA and the scalar(1+r)ˆn is formed.

4. A * may be used instead of a. * because the array multiplication is between a scalar and a
non-scalar (although. * would not be wrong).

5. A table is displayed, with columns given by the transposesof A andB.

The process of writing out a formula such that we can calculate it for a vector of inputs is called
vectorisationof a formula. Vectorization of MATLAB code is very important. MATLAB has been
carefully optimized for vector and matrix operations, and will do these very quickly (almost as
quickly as purpose written C-code). Other types of operations are not as fast, as we shall see later.

3.4. VECTORISATION OF FORMULAE 25

Example: Often we want to compute much more complicated formulae, fora range of inputs.
For instance, let us compute the following formulae for calculating the value of a European call
option (using the Black-Scholes model). A European call option on a share gives us the right to
buy a share of the stock at priceK afterT years. The Black-Scholes formula gives its predicted
value at

C = SΦ(d1) − Ke−rT Φ(d2),

whereΦ(·) is the standard normal cumulative distribution function.

d1 =
ln(S/K) + (r + σ2/2)T

σ
√

T

d2 =
ln(S/K) + (r − σ2/2)T

σ
√

T
S = current price of the stock

T = time till option is exercised

K = exercise price

r = interest rate

σ = volatility

Obviously this is rather complicated if we wanted to computeby hand, but we can calculate the
value of the option for a variety of exercise pricesK using the simple MATLAB code

% set the problem parameters
S = 1, r = 0.07, sigma = 1, T = 3;
K = 0:0.1:2;
d1 = (log(S./K) + (r-sigmaˆ2)/2)/(sigma * sqrt(T));
d2 = (log(S./K) + (r-sigmaˆ2)/2)/(sigma * sqrt(T));
C = S * normal_cdf(d1) -exp(-r * T) * K . * normal_cdf(d2)
plot(K, C);

where we will describe how to define the functionnormal_cdf(x) in Section 8.2.3. Notice
that we put. * and./ operators in the places where we could be operating on vectors. The result
is a graph (shown in Figure 3.1) showing us the behaviour of the option values, from which we
can assess what we would be willing to pay for such an option.

0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

K

C

Figure 3.1: Option prices

26 CHAPTER 3. MATLAB AS A BIG CALCULATOR

Chapter 4

Input/Output

Often we need to either obtain input to our program from the user, or from a file, or output in-
formation to the user or a file. We have already seen two approaches to sending output to the
MATLAB window.

1. With thedisp function, e.g.disp(x) .

2. By entering a variable name, assignment or expression on the command line, without a
semi-colon;

In this chapter we will provide more details of these approaches, but also we will introduce other
approaches to I/O (Input/Output).

4.1 disp

The general form ofdisp for a numeric variable is

disp(variable)

To display a message and a numeric value on the same line we usethe following technique:

x=2;
disp([’The answer is ’, num2str(x)])

The output should be

The answer is 2

We want to display acharacter stringand a number but the elements of a MATLAB vector must
be either all numbers or all strings. To overcome this we convert the numberx to its string
representationusing the functionnum2str , and the square brackets ([]) concatenate the two
strings to form one string which is displayed.

27

28 CHAPTER 4. INPUT/OUTPUT

4.2 Theformat statement

MATLAB has the following two basic rules:

1. It always attempts to display integers (whole number) exactly. If the integer is too large it is
displayed in scientific notation with five significant digits, e.g 1 234 567 890 is displayed as
1.2346e+09 (i.e 1.2346 × 109).

2. Numbers with decimal parts are displayed with four significant decimal digits. If the value
of x is in the range0.001 < x ≤ 1000 it is displayed in fixed point form, otherwise scientific
(floating point) notation is used e.g. 1000.1 is displayed as1.0001e+003 .

Note that numbers are not displayed to the precision they arecomputed to.

This is MATLAB ’s default format. It is possible to change to format for output. To output
numbers displaying more significant digits useformat long , or format bank can be used to
output currency to two decimal places. There are many other options, seehelp format for details.
However, complete control over the output format requires us to use thefprintf function.

4.3 fprintf

Thefprintf statement is much more flexible thandisp . Consider the example

balance = 12345;
rate = 0.09;
interest = balance * rate;
balance = balance + interest;
fprintf(...

’Interest rate: %6.3f New balance: %8.2f\n’, ...
rate, balance)

If we run this our output should look like

Interest rate: 0.090 New balance: 13456.05

The fprintf function has allowed us to control the format of the output precisely. More gener-
ally, we might callfprintf using

fprintf (’ format string’, list of variables)

The format stringcontrols how the output appears. It may contain a simple textstring, in which
case this is printed out. It may also contain one of a series ofcodes (mixed into the text), and these
special codes are replaced (in the output) with either a special character, or the value of one of the
variables in the list of input arguments. Table 4.1 gives a list of common codes.

Note the following:

1. In the case of%eand%f thefield widthand number of decimal places or significant figures
may be specified immediately after the%. For instance we might write

4.3. FPRINTF 29

Code Action
%f write a numerical variable in decimal notation
%e write a numerical variable in scientific notation
%g write a numerical variable (MATLAB ’s choice)
%s write a string variable
%% the % sign
\n new line
\t horizontal tab
\b backspace
\\ \

Table 4.1: Special codes used byfprintf

• %8f which means the width of the output will be 8 characters (and extra space will be
padded at the left to fill in gaps).

• %.3f which means write the number out showing three decimal places. By default%f
means%.6f .

• %6.1f which means write the number with width 6, and one decimal place.

• %12.3e means scientific notation over 12 columns altogether (including the decimal
point, a possible minus sign and four for the exponent) with 3digits in the mantissa
after the decimal point.

Note that numbers are rounded off when outputting with limited precision.

2. The%gspecifier is mixed and leaves it up to MATLAB to decide exactly what format to use.

3. The%s specifier also allows you to specify the width of the output string (padded with
spaces if the string is not wide enough), e.g.%6s.

4. Thelist of variablescontains values that we wish to output.

5. Note that fprintf can take a vector as an input variable, and will recycle the format string
until the the elements of the input are all used (they are usedcolumnwise).

6. We often end a format string with\n in order to start the next output on a new line.

Table 4.2 shows a series of examples offprintf functions illustrating some of these options.

There are a number of otherconversion characters(characters following a % sign), andescape
codes(characters following a backslash\), but we will not consider them in detail here. It is
noteworthy that the syntax offprintf in MATLAB is similar to that used inC, and the two
duplicate many escape codes and conversion characters.

4.3.1 Output to a file with fprintf

Output may be sent to a file withfprintf . To do so we need toopenthe file for writing with the
fopen function. This will create afile identifier, or FID variable. For example:

30 CHAPTER 4. INPUT/OUTPUT

function call output
fprintf(’Hello, world!\n’) Hello, world!

fprintf(’pi = %f\n’, pi) pi = 3.141593
fprintf(’pi = %.12f\n’, pi) pi = 3.141592653590
fprintf(’pi = %10.6f\n’, pi) pi = 3.141593
fprintf(’pi = %e\n’, 100 * pi) pi = 3.141593e+02
fprintf(’pi = %g\n’, 100 * pi) pi = 314.159

fprintf(’x = %.0f\n’, 1:3) x = 1
x = 2
x = 3

fprintf(’x = %3.0f, y = %.3f\n’, -1, sqrt(2)) x = -1, y = 1.414

fprintf(’message = %s\n’, ’hello’) message = hello

Table 4.2: Examples offprintf . The first is just printing a string, the second group show
different number formats, and the third shows the recyclingof the format string when the input
variable is a vector.

fid = fopen(’exp.txt’,’w’);

The first input argument tofopen is the name of the file we wish to write to. The second input
argument’w’ specifies that it is to be opened forwriting. Thefopen function has lots of other
options. Usehelp fopen to find out more.

Thefprintf command takes an extra input argument, which is the FID variable, in this case
fid , which tellsfprintf to output the results to the file. For example,

x = 0:.1:1;
y = [x; exp(x)];
fid = fopen(’exp.txt’,’w’);
fprintf(fid,’%6.2f %12.8f\n’,y);
fclose(fid);

After writing the output to the file we need toclosethe file with thefclose function. Note that
we can give the FID variable any (allowed) variable name, andhave more than one open file at a
time. We can even have an array of FID variables.

Note thatfopen can also be used to open a file for reading (or several other options). When
reading a file, we might use thefscanf function but there is often a better approach.

4.3.2 sprintf

Sometimes it is desirable to create a string, including variables. We can use thesprintf function
to do this. The function is called just asfprintf , but it has one output argument, which is the

4.3. FPRINTF 31

result of the combination of formatted string output. For instance

the_string = sprintf(’pi = %f\n’, pi)

Will result in the_string holding the value’pi = 3.141593’ . This type of construction
can often be useful for creating title plots, for instance, consider the following code that creates a
plot, with a title that depends on the value off .

f = 3;
x = 1:0.01:10;
y = sin(f * x);
plot(x, y);
title_str = sprintf(’f = %f\n’, f);
title(title_str);

4.3.3 Theinput command

Let’s rewrite the script filecalc interest.m so that it looks like

balance = input(’Enter bank balance: ’);
rate = input(’Enter interest rate: ’);
interest = rate * balance;
balance = balance + interest;
format bank
disp(’New Balance:’)
disp(balance)

If we now enter the script file name, which I’ve calledcalc interest1.m at the prompt we are
interrogated by the computer for the initial values of the balance and interest rate. The command
window will contain the following lines:

>> calc_interest1
Enter bank balance: 1000
Enter interest rate: 0.15
New Balance:

1150.00

The input statement provides a more flexible way of getting data into a program. It allows us to
enter datawhile a script is running.

The general form of theinput statement is

variable= input(’ prompt’)

1. prompt is a message which prompts the user for the values(s) to be entered. It must be
enclosed in apostrophes (single quotes).

2. A semi-colon at the end of theinput statement will prevent the value entered from being
immediately echoed on the screen.

32 CHAPTER 4. INPUT/OUTPUT

3. Vectors and matrices may also be entered withinput , as long as you remember to enclose
the elements in square brackets.

4. Strings may be input if they are enclosed in quotes, e.g.,

name = input(’Enter your name: ’);
fprintf(’Hello %s!\n’, name);

we would see a prompt and enter our name as follows:

Enter your name: ’John’
Hello John!

4.4 Advanced I/O

MATLAB has many commands for more advanced Input/Output. A common requirement is to
read data from a file. Simple text files are the easiest to read.MATLAB supports this in a variety
of ways the most general being thefscanf function, which is similar to the function of the same
name inC.

However, we can use an simple approach when a data file is really a table, i.e., it consists of
a series of lines, each of which is in a fixed format. More specifically, row i of the file looks
something like

datai1, datai2, datai3, ..., dataiN

where for a given columnj, each of the termsdataij is the same type of data (number or string).
In this case we can use thetextread function. We call this function as follows:

[data1, data2, ..., dataN] = textread(file, format_str);

The file is the file from which we wish to read, and the format string specifies whether the data
is a string, number, of some other type of data. Each of the output variables would contain one
column of the data from the file, i.e., for a file withm rowsdata1 = (data11, . . . , datam1)

′.

The functiontextread has many optional arguments to, for instance, change the delimiter
between data in each row, or to allow for header lines, or comments in the file. For instance,
assume we have a fileaddresses.dat as follows:

% format:
% last name, first name, address, age
Potter,Harry,Hogworts,17
The Grey,Gandalf,Middle Earth,1023
Christmas,Father,North Pole, 2008

We could read this file using the commands

4.4. ADVANCED I/O 33

file = ’addresses.dat’;
format_str = ’%s %s %s %f’;
[last_name, first_name, address, age] = ...

textread(file, format_str, ...
’commentstyle’, ’matlab’, ...
’delimiter’, ’,’);

The optioncommentstyle allows us to specify that strings beginning with % are comments
(just as they are in a MATLAB program), and thedelimiter option specifies that the file is in
CSV format. The data itself would be read into the variables with the corresponding names. For
instance, the variableage would be a column vector containing[17; 1023; 2008] .

Many files can be read usingtextread and various related functions. However, these are all
text files that basically consist of a series of characters. Abinary file, consists of a series of 1’s
and 0’s in a format that is (i) often optimized to reduce spacerequirements, and (ii) depends on
the type of data being held. Common examples include Excel’sfile format, along with common
media files such as music and video files. MATLAB has many functions for reading, writing and
displaying such data. We will not examine these at length except to note some of the possibilities:

• Audio: MATLAB can read several file formats, but the easiest and most commonare.wav
files, which can be read/written and played using thewavread , wavwrite andwavplay
functions.

• Images: Image in many formats (e.g.,.png , .jpg , .tiff , etc.) can be read into MATLAB

usingimread , written usingimwrite and displayed using theimage functions.

• Excel: Excel files can be read and written usingxlsread andxlswrite .

• Video: .avi video files can be read and written usingaviread andmovie2avi , re-
spectively.

Thehelp command can provide further information about all of these functions, and additional
I/O functions can be found usinghelp iofun .

34 CHAPTER 4. INPUT/OUTPUT

Chapter 5

Program flow control

We have seen earlier that MATLAB statements are usually executed in the order we type them,
either in the command window, or in a.m script file. However, sometimes we want the order or
execution of statements to change, perhaps depending on thevalue of a variable. We might want
certain statements to only run under some circumstances, orto run multiple times. Programflow
control refers to the programming constructions used to achieve this type of reordering.

MATLAB is a high-level language, which means that it is intended to look a little like a natural
human language — in particular English — combined with standard mathematical formulas. Until
now we have mainly concentrated on the mathematical component, but we will now examine
some of the “English-like” syntax used in MATLAB that are used to control program flow, in
particular thekeywordsif , else , end , for andwhile . More information can be found using
thehelp lang command.

5.1 Making decisions withif

A standard requirement isconditional execution, i.e., we only want to execute some piece of code
if a condition is true. The condition could depend on previous calculations, and so we don’t know
the result when we are writing the program. We only learn whether the condition holds when the
program executes. We typically achieve this type of conditional execution using theif statement.

For example, the MATLAB function rand generates a random number in the range0 − 1.
What would we expect if we were to enter the following commands?

r = rand;
if r > 0.5

disp(’greater indeed’)
end

In the second statement we have usedif and a relational operator>. MATLAB will only display
the messagegreater indeed if r is greater than 0.5.

35

36 CHAPTER 5. PROGRAM FLOW CONTROL

5.1.1 Theif statement

The simplest form of theif statement is

if condition
statements

end

We note the following points:

1. conditionis usually alogical expression, i.e. an expression containing logical operators such
as are found in Table 3.2. Typically it might involve one or more relational (comparison)
operators, combined with logical operations like AND and OR.

2. If conditionis true,statementis executed but ifconditionis false, nothing happens.

3. The condition should typically be a scalar. If it is a vector or matrix, it is considered true
only if all elements of the matrix are true. A single zero element in a vector or matrix renders
it false.

Simple examples of condition are

MATLAB condition meaning
bˆ2<4 * a* c b2 < 4ac
x>=0 x ≥ 0
a˜=0 a 6= 0
bˆ2==4 * a* c b2 = 4ac
x >= 0 & x < 5 0 ≤ x < 5

5.1.2 Theif-else statement

Consider the following example:

x = 2;
if x < 0

disp(’negative’)
else

disp(’non-negative’)
end

This tests to see ifx is negative. If it is it will return the messagenegative , if it is positive or
zero it will return the messagenon-negative .

Most banks offer differential interests rates. Suppose that the rate is 9% if the amount of your
savings is less than $5000 but 12% otherwise. Given a starting balance, we can calculate our new
balance using the following program:

% test whether balance is less than 5000
if balance < 5000

% if it is set the interest rate to be 0.09

5.1. MAKING DECISIONS WITHIF 37

rate = 0.09
else

% balance is greater than or equal to 5000
% set the interest rate to be 0.12
rate = 0.12

end

% calculate and display the new balance
new_balance = balance + rate * balance;
disp(’New balance after interest paid is:’)
format bank
disp(new_balance)

The basic form ofif-else for use in a program file is

if condition
statements1

else
statements2

end

Note the following:

1. Bothstatements1andstatements2represent one or more statements.

2. If the condition is true,statements1are executed, but if the condition is false,statements2
are executed. This is how we force MATLAB to choose between two alternatives, and in
programming it is often callbranching.

3. Theelse part is optional. Theif statement is a special case of theif-else statement.

5.1.3 elseif

Suppose our bank now offers 9% interest on balances of less than $5000, 12% on balances of
$5000 or more but less than $10000 and 15% for balances over $10000. We can calculate the new
balance after one year by using the following:

% test whether balance is less than 5000
if balance < 5000

% if it is set the interest rate to be 0.09
rate = 0.09

% test whether balance is less than 10000
elseif balance < 10000

% if it is set the interest rate to be 0.12
rate = 0.12

else % balance is greater than or equal to 10000
% set the interest rate to be 0.15
rate = 0.15

38 CHAPTER 5. PROGRAM FLOW CONTROL

end

% calculate and display the new balance
new_balance = balance + rate * balance;
disp(’New balance after interest paid is:’)
format bank
disp(new_balance)

In general theelseif clause is used as follows:

if condition1
statements1

elseif condition2
statements2

elseif condition3
statements3

...
else

statementsN
end

We sometimes call this anelseif ladder. It works as follows:

1. condition1is tested. If it is truestatements1are executed; MATLAB then moves to the next
statement afterend .

2. If condition1is false, MATLAB checkscondition2. If it is true, statements2are executed,
followed by the statements afterend .

3. In this way, all the conditions are tested until a true condition is found. As soon as a true
condition is found no furtherelseif statements are examined and MATLAB jumps off the
ladder.

4. If none of the conditions are true,statementsNafterelse are executed.

5. There can be any number ofelseif ’s but at most oneelse .

6. elseif must be written as one word.

7. if andif-else statements are special cases of theif-elseif-else statement.

5.1.4 Logical operators

Logical expressions can be constructed using thethree logical operators& (and),| (or), ˜ (not),
that we examined earlier. For example the quadratic equation

ax2 + bx + c = 0,

has equal roots, given by−b/(2a), provided thatb2 − 4ac = 0 anda 6= 0. This can be translated
to the following MATLAB statements:

5.1. MAKING DECISIONS WITHIF 39

if (bˆ2 - 4 * a* c == 0) & (a ˜= 0)
x = -b / (2 * a)

end

5.1.5 Nestedif statements

It is possible, and not uncommon forif statements to benested. This means we have oneif
statement inside another, for example

if (isreal(x))
if (x < 0)

disp(’x is real, and negative’);
elseif (x > 0)

disp(’x is real, and positive’);
else

disp(’x is zero’);
end

else
disp(’x is complex’);

end

The first if results in printing out the messagex is complex unlessx is real, in which case
the secondif statement is used to discriminate between three cases.

We could have implemented the above nestedif statements using a singleif-ifelse-else
statement, e.g.,

if (isreal(x) & x < 0)
disp(’x is real, and negative’);

elseif (isreal(x) & x > 0)
disp(’x is real, and positive’);

elseif (isreal(x))
disp(’x is zero’);

else
disp(’x is complex’);

end

Complex conditionals can often be expressed in multiple ways, and the best choice often depends
simply on making code as readable as possible. However, an important factor in design of condi-
tional statements is minimizing the number of operations (for instance comparisons) that we need
to perform. If we test for common cases first, then we can ofteneliminate many subsequent com-
parisons. Likewise, we can sometimes use careful construction of nestedif statements to reduce
the number of comparisons that we need to perform on average,or in the worst case. By doing so
we can improve the performance of our code.

For example, imagine that we need to classify a series of inputs into three categories:A, B
andC, based on the output of three logical functionsisA , isB andisC , and output the results.
Imagine also that in our dataset, 1000 cases are in groupA, 500 in groupB, and only 1 in group
C.

We might do this classification in any order, two examples being

40 CHAPTER 5. PROGRAM FLOW CONTROL

if (isA(x)) if (isC(x))
disp(’x is in group A’); disp(’x is in group C’);

elseif (isB(x)) elseif (isB(x))
disp(’x is in group B’); disp(’x is in group B’);

elseif (isC(x)) elseif (isA(x))
disp(’x is in group C’); disp(’x is in group A’);

else else
disp(’Error’); disp(’Error’);

end end

In the example on the left-hand side, we would perform the first comparison for every data point,
the second for those in groupsB andC, and the third for only those in groupC, because the other
groups would already have been eliminated by the first two comparisons.

In the example on the right-hand side, we again perform the first comparison for all data points,
but the second is performed for all groupB andA points, and the third for all of groupA. So the
total number of comparisons performed for the two approaches is

comparison left approach right approach
first 1501 1501

second 501 1500
third 1 1000
total 2002 4001

We can immediately see that the left-hand approach performsnearly half as many comparisons as
the right-hand approach, and so would run roughly twice as fast.

5.1.6 Theswitch statement

Where we wish to compare a complex series of conditions, it isoften simpler to use aswitch
statement, rather than a long series ofelseif statements. A switch statement looks like

switch switchexpr
case caseexpr,

statements1
case caseexpr,

statements2
case caseexpr,

statements3
...

otherwise,
statementsN

end

Theswitch statement looks for the firstcaseexprwhich matches theswitchexpr, and executes
the statements following this case. If none of the case statements match, the statements following
theotherwise are executed. For example, consider the following code:

5.2. REPETITION WITHFOR 41

grade = input(’Enter your grade (F,P,C,D,HD):’);
switch grade

case ’F’
fprintf(’Your mark was < 50\n’);

case ’P’
fprintf(’Your mark was between 50 and 65\n’);

case ’C’
fprintf(’Your mark was between 65 and 75\n’);

case ’D’
fprintf(’Your mark was between 65 and 75\n’);

case ’HD’
fprintf(’Your mark was > 85\n’);

otherwise,
fprintf(’Error: %s was not a valid grade\n’, grade);

end

The response of the program to an input like’D’ would beYour mark was between 65 and 75 ,
and it outputs an error if an invalid grade is input. Note alsothat the comparison works between
strings (we have to input a string in quotes), whereas the comparison operator, e.g.grade == ’HD’
would treat’HD’ as a vector and would therefore fail ifgrade was a vector with only one ele-
ment. You can test multiple conditions in a switch/case statement by putting them in curly brackets,
e.g.{’D’,’HD’} .

5.2 Repetition withfor

Computers are stupid (we have to be quite careful about what we tell them to do) but very fast.
Furthermore, many numerical techniques are built around the idea of performing a simple opera-
tion many times. As a result, a common requirement in programming is the ability to repeat code
more than once (often many times). Obviously we could type the same commands more than once,
but this is annoying, and more importantly it is harder to debug (you have to make sure each copy
of the commands is exactly the same). There is an easier way. Repeating the same code is called
iteration.

The most common type of iteration (in MATLAB) is count controllediteration where we create
a counter, and iterate over certain values of the counter. InMATLAB we do this using thefor
statement. The following code

for i = 1:3
disp(i)

end

creates thecounteri and then iterates thedisp statement for each value of the counter in the
specifier1:3 . That is, we execute the loop three times, once for each valuei = 1, 2, 3. The output
would be

1

42 CHAPTER 5. PROGRAM FLOW CONTROL

2
3

This type of high-level iteration construct was first used inFORTRANin 1956, though it was
called aDO loop in FORTRAN. For many years,FORTRANwas the most important language
for scientific computation applications, primarily because of these types of high-level constructs
which it pioneered.

5.2.1 An example: square roots via Newton’s Method

The square rootx of any positive numbera may be found using only the arithmetic operations of
addition, subtraction and division viaNewton’s method. This is an iterative process that refines
an initial guess. The followingpseudo-codedescribes Newton’s method for calculating the square
root ofa.

1. Initialisex to a/2

2. Repeat the following steps a number of times (6 say)

• Replacex by (x + a/x)/2

3. Stop

The MATLAB program to do this (for the casea = 2) follows. Note that we print out the value of
x at each iteration.

disp(’Square roots via Newtons method’)
a = 2;
format long;
format compact;
x = a/2;
for i = 1:6

x = (x+a/x)/2
end
disp(’Matlab’’s value for sqrt(2) is: ’)
disp(sqrt(2))

The output (after making the format long and compact) is

x =
1.500000000000000

x =
1.416666666666667

x =
1.414215686274510

x =
1.414213562374690

x =

5.2. REPETITION WITHFOR 43

1.414213562373095
x =

1.414213562373095
Matlab’s value for sqrt(2) is:

1.414213562373095

The value ofx converges to a limit, which is
√

a. Note that this is identical to the value returned
by the MATLAB functionsqrt .

5.2.2 The basicfor statement

The simple form of thefor loop is
for index = j:k

statements
end

The loop will be performed exactly once for each value ofindex from j, j + 1, j + 2, . . . , k, in
order. On completion, the variableindex contains the last value used.

The termindexcan be any valid variable, e.g.,i , a_variable , or counter , but cannot
take the form-x , or any other invalid variable name.

5.2.3 More generalfor statements

More generally, we can perform afor loop over any vector, i.e.,
for index = vector

statements
end

In this case, the loop is run once for index taking each element of the vector as a value (in order
through the vector). Typically the vector is constructed for thefor loop, e.g.,

for index = 1:10:51
disp([’index = ’ num2str(index)])

end

which would construct the vector[1 11 21 31 41 51] , and then apply the loop, outputting
index = 1
index = 11
index = 21
index = 31
index = 41
index = 51

We can explicitly construct the vector before calling the loop, e.g.,
index_values = 10.ˆ[1:3];
for index = index_values

disp([’index = ’ num2str(index)])
end

44 CHAPTER 5. PROGRAM FLOW CONTROL

which would run the loop once each with the values ofindex being10, 100 and1000 and output

index = 10
index = 100
index = 1000

If the vector is empty,statementsare not executed and control passes to the statement following
theend statement. For instance,

for i = 5:0
disp(i)

end

will not do anything, because the vector[5:0] is empty. The correct form of this would be
to use[5:-1:0] . It is sometimes worth explicitly testing for an empty indexvector using the
isempty function before entering a loop, and output an error if the vector would be empty.

Example: We can combineif andfor statements. Consider a bottle of wine at temperature
25◦C, which is placed in a refrigerator where the ambient temperatureF is 10◦C. We want to find
out how the temperature of the wine changes over a period of time. To do this we first need one
‘fact’, namelyNewton’s Law of Coolingwhich states:

The rate of change of temperatureT within a body placed in an environment whose
ambient temperature isF is proportional to the difference between the temperature of
the body and the ambient temperature,T − F .

Mathematically this translates to (remembering thatrate-of-changewith respect to time is simply
the derivative of the function)

dT

dt
= −K(T − F). (5.1)

We note

1. K is a constant of proportionality which depends upon the insulating properties of the ma-
terial, in our case the glass bottle, and also the thermal properties of the wine.

2. The constantK is positive, since ifT > F , so that the wine is hotter than the ambient
temperature, we expect it to cool and hence the rate of changeof the temperature must be
negative.

A standard way of approaching problems of this type is to break the time period up into a number
of small steps, each of lengthdt. If Ti is the temperature at thebeginningof stepi, we can use a
simpleEuler method to get fromTi to Ti+1.

This method relies on approximating the differential equation

dy

dt
= f(y; t),

by the approximation
yi+1 − yi

∆t
= f(yi; ti).

5.2. REPETITION WITHFOR 45

For our cooling problem we have

Ti+1 = Ti − K∆t(Ti − F).

The following MATLAB script implements this scheme:

% Variable initialisations.
K = 0.05;
ambient_temperature = 10;
temperature = 25;
start_time = 0;
end_time = 100;

% Request input values.
delta_t = input(’Input the computational interval, delta_ t:’);
output_interval = input(’Please input the output interval : ’);
if rem(output_interval,delta_t) ˜= 0

error(’The output interval must be a multiple of delta_t!’)
end

time = start_time;
disp(’Time Temperature’)
disp([time temperature])

for time = start_time+delta_t : delta_t : end_time
temperature = temperature - K * delta_t * ...

(temperature-ambient_temperature);
if rem(time, output_interval) == 0

disp([time temperature])
end

end

The functionrem computes a remainder. It is used to check thatoutput interval is an
integer multiple ofdelta t , and to display the results everyoutput interval minutes (when
time is an integer multiple ofoutput interval the remainder will be zero).

5.2.4 Nestedfor statements

As with if statements, it is common in programming tonestfor loops. This means placing one
for loop inside another. For instance, when we work with anN × M array of dataA, we might
use a construction such as

N = 12;
M = 12;
for i=1:N

for j=1:M

46 CHAPTER 5. PROGRAM FLOW CONTROL

A(i,j) = i * j;
end

end

The inner loop is executed once for each outer loop, so we willeventually iterate through all
allowed values ofi andj.

5.2.5 Avoidingfor loops by vectorising

Suppose we want to evaluate
1000000
∑

n=1

1

n2
.

There are two way to do this. Firstly using thefor loop

partial_sum = 0;
for term = 1:1000000

partial_sum = partial_sum + 1 / termˆ2;
end
disp(partial_sum)

We canvectorisethis command by using thesum command

terms = 1:1000000;
partial_sum = sum(1 ./ terms.ˆ2)

In general, MATLAB is highly optimized for vectorized calculation. A vector/matrix computation
such as the second approach will be much faster than the first.On my computer, the first approach
took 1.03 seconds, and the second approach tool only 0.048 seconds. The second approach was
more than 20 times faster!

This type of speedup is most clear in large, nested loops. Forinstance, if we wished to compute
a large multiplication table, we could use the nested loop approach immediately above, or we could
use the matrix approach described in Section 2.8. The latterapproach will be much faster.

This a key feature/problem with MATLAB . The fact that it can do matrix operations quickly
is of great value. However, it is not always easy to vectorisea complex program. Also, there is a
cost in memory – the vectorized approach requires us to storea large vector in memory, whereas
the nested loop approach can sometimes avoid this.

5.2.6 Preallocating arrays

An additional issue, when we use a loop, is preallocation of arrays. MATLAB ’s ability to allocate
memory for arrays on the fly makes it convenient to simply create an array as we go through a
loop, e.g., consider the following code to compute the Fibonacci sequence:

x(1) = 1;
x(2) = 1;
N = 10000;

5.2. REPETITION WITHFOR 47

for i=3:N
x(i) = x(i-1) + x(i-2);

end

Here the vectorx is extended in each iteration of the loop. However, when we know it size, it is
often more efficient to preallocate the array. For instance:

N = 10000;
x = zeros(N,1);
x(1) = 1;
x(2) = 1;
for i=3:N

x(i) = x(i-1) + x(i-2);
end

This creates the array before we use it in the loop, and avoidsmemory management overhead
inside the loop. In my version of MATLAB , the second approach is roughly ten times as fast. Note
that the above code could also be vectorized, given even better improvements in speed, but there
are some times when vectorization is not an option.

5.2.7 Non-deterministic repetition

The key feature of afor loop is that the loop repetition is deterministic in the sense that it is
predetermined at the start of the loop. The number of iterations may depend on earlier defined
variables. For example, we may set a variableNwhich is then used in creating thefor loop, e.g.,

for i = 1:N
disp(i)

end

but care must be taken with afor loop to avoid tampering with the index variable inside the loop.
If we explicitly change the value of the counter variable inside the loop the behaviour of the loop
becomes unspecified, and we won’t know what will happen in advance. So once the loop is started
we (apparently) can’t stop it early. Certainly we shouldn’ttry to stop it by changing theindex .

However, there are two statements that allow us the varying the standard looping behaviour.
The first allows early breakout from the loop: thebreak statement will drop us out of a loop
early. It is usually used in conjunction with a conditional statement to cause early breakout from a
loop in special circumstances, e.g.,

for i=1:1000000
x = some_complex_function(x, i);
if (isnan(x))

break;
end

end

This loop repeatedly changes the value ofx based on its previous value, and the value of the
counter variablei . However, if there is a problem and the function returnsNaN, then we break
out of the loop prematurely in order to avoid many needless repetitions of the loop.

48 CHAPTER 5. PROGRAM FLOW CONTROL

Thebreak statement should be used with considerable caution as it canreduce readability of
code significantly.

The other related statement is thecontinue statement, which passes the loop onto its next
value, skipping any remaining statements, e.g.

for i=1:6
if (mod(i,2) == 0)

continue;
end
disp(i);

end

would output

1
3
5

Even terms are omitted from the output, even though we loop over all terms, because thecontinue
statement is executed in these cases, and hence subsequent statements (e.g. thedisp statement)
are avoided for even values ofi . Once again,continue statements should be used with care
because of readability concerns. Frequent use ofbreak andcontinue can result inspaghetti
code.

And there is a better approach, using non-deterministic repetition via awhile loop.

5.3 Non-deterministic repetition with while

Suppose we want to use a loop but we don’t know how long it will runbefore we startthe loop. It
is common that we want to run a numerical algorithm until it hasconvergedwhere we won’t know
how long this will take until we run the algorithm. We call this acondition controlledloop. The
number of executions of the loop will be controlled some condition calculated within the loop,
rather than by a simple counter defined as part of the loop.

A simple example of this type of loop is the following game. MATLAB ‘thinks’ of a number
between1 and10 and we have to guess it. If our guess is too high or too low then the script must
say so, and then give us another go. If our guess is correct then the script should congratulate us.

Here’s the pseudo-code for the problem

1. Generate a random number.

2. Prompt the user for a guess.

3. While the guess is wrong:

• If the guess is too low

– Tell the user it is too low

• Otherwise

5.3. NON-DETERMINISTIC REPETITION WITHWHILE 49

– Tell the user it is too high

• Ask user for a new guess.

4. Congratulations.

5. Stop.

Here is a script to carry out our program

matlabs_number = floor(10 * rand +1);
guess = input(’Your guess please: ’);

while (guess ˜= matlabs_number)
if guess > matlabs_number

disp(’Too high’)
else

disp(’Too low’)
end
guess = input(’Your next guess please: ’);

end

disp(’At last you have guessed it! My value was:’)
disp(matlabs_number)

5.3.1 Thewhile statement

In general thewhile statement looks like this:

while condition
statements

end

The while statement repeatsstatementsWHILE its condition remains true. The condition is
tested each time BEFOREstatementsare executed. Recall that avectorcondition is considered to
be true only ifall its elements are non-zero.

We can replicate afor loop using awhile loop by explicitly constructing the counter vari-
able, e.g., if we wanted to construct the following

for counter = 1:M:N
statements

end

we would use

counter = 1;
while counter <= N

statements
counter = counter + M;

end

50 CHAPTER 5. PROGRAM FLOW CONTROL

In this example we explicitly create thecounter variable, and increment it by the required
amountM at each loop. Thefor loop construction is more concise, and so often preferred, but
thewhile loop form allows more flexibility in combining both count controlled, and condition
controlled looping.

5.3.2 Infinite loops

One of the dangers of a condition controlled loop is that the condition will remain true forever.
In this case the loop will continue indefinitely. We call thisan infinite loop, and it will result
in a program that doesn’t terminate naturally. For instance, the following program will execute
indefinitely,

while (1)
disp(’Hello, world!’);

end

The program will repeatedly output “Hello, world!” becausethe condition1 is always true (re-
member that in MATLAB 1 stands for the logical TRUE). In MATLAB we can stop a program by
exiting MATLAB , or by typingCtrl-C , which sends an interrupt signal to MATLAB . When
MATLAB receives such a signal it should stop what it is doing. It willstop normal execution of a
program, or even the infinite loop above.

Occasionally an infinite loop can be useful. Sometimes we want a program to perform some
action until the program is halted (by some outside interrupt). This type of programming falls
outside the scope of this course.

5.4 Programming style

Whenever we have a conditional, or loop, it is wise to indent the code inside the loops (much as we
have done above). This greatly enhances the readability of the code by showing which parts will
be executed (conditionally, or iteratively). Where there are multiply nest loops or conditionals,
then use multiple levels of indentation. MATLAB ’s editor will do this for you, but other editors
may not do it automatically (for instance when you are codingC there is no built in editor).

Sometimes, if the code inside a conditional or loop is long (say longer than one page roughly)
then we might also add a comment to theend statement, to help indicate which conditional or
loop it is associated with. This can make debugging some codeeasier. For instance, we might
write

if (A > B)
statement1
statement2

...
statementN

end % if (A > B)

5.5. OTHERMATLAB STATEMENTS 51

The comment% if (A > B) indicates which conditional theend statement is finishing.

On another point, I prefer to place conditionals inside brackets (forif andwhile statements).
This is not generally necessary, but I find that it separates the logic of the condition from the
syntactical components and makes the result more readable.

5.5 Other MATLAB statements

MATLAB has a number of additional programming statements for flow control, mirroring many
modern programming languages. For instance

• try andcatch

• error

• assert

• return

These will not be covered in this course, but it is perhaps useful to know they exist. More infor-
mation can be found usinghelp lang or help command.

52 CHAPTER 5. PROGRAM FLOW CONTROL

Chapter 6

Commonly used functions and variables

MATLAB has a large number of useful constants and functions rangingfrom mathematical func-
tions to those for manipulating strings. Here we will present a quick summary of a number of the
most commonly used. Much more detail on a function can be found by typinghelp , followed by
the function’s name. If you are trying to find a function, but don’t know its name thelookfor
command can often find it by searching for MATLAB commands that either match the search string
(given as an input), or whose first line of description matches the search string.

6.1 Constants
MATLAB has a number of pre-defined constants.

Constant name Value
pi π
i

√
−1

j
√
−1

eps the distance from 1.0 to the next larger double precision number
realmax largest positive floating point number
realmin smallest positive floating point number
false 0 (logical)
true 1 (logical)

Note that “constants” are really just variables (in MATLAB) and so can be easily redefined. Also
note that irrational numbers can only be approximately represented, so constants such asπ are
only accurate to machine precision. Some standard constants such ase are not defined, but are
easily calculated, for instancee = exp(1). Some of the above constants are actually functions,
e.g.,eps(x) gives the the positive distance from|x| to the next larger in magnitude floating point
number. There are also equivalent function torealmax andrealmin for integers.

53

54 CHAPTER 6. COMMONLY USED FUNCTIONS AND VARIABLES

6.2 Elementary Mathematical Functions

Here we present some of MATLAB ’s elementary mathematical functions. Note that if the argument
of a function is a vector (or array), the function is applied element by element to the values of the
vector, e.g.

sqrt([1 4 9 16])
returns

1.0000 2.0000 3.0000 4.0000
Function list

Function Effect
abs(x) absolute value ofx .
acos(x) arc cosine (inverse cosine) ofx (returns a value between0 andπ).
acosh(x) inverse hyperbolic cosine ofx , i.e. ln(x +

√
x2 − 1).

asin(x) arc sine (inverse sine) ofx (returns a value between−π/2 andπ/2).
asinh(x) inverse hyperbolic sine ofx .
atan(x) arc tangent ofx (returns a value between−π/2 andπ/2).
atanh(x) inverse hyperbolic tangent ofx .
ceil(x) the smallest integer which is greater than or equal tox
conj(x) complex conjugate ofx .
cos(x) cosine ofx .
cosh(x) hyperbolic cosine ofx .
exp(x) value of the exponential functionex.
factorial(n) n!.
floor(x) the largest integer less than or equal tox
imag(x) returns theimaginarypart ofx .
log(x) natural logarithm ofx .
log2(x) base 2 logarithm ofx .
log10(x) base 10 logarithm ofx .
mod(x,k) x modk .
nchoosek(n,k) the number of combinations

(

n

k

)

= n!/k!(n − k)!.
rand random number in the interval[0, 1).
real(x) thereal part ofx
rem(x,y) remainder whenx is divided byy i.e.rem(19,5) returns4.
round(x) rounds to the nearest integer
sign(x) the value−1, 0 or 1 depending upon whetherx is -ve, zero or +ve.
sin(x) sine ofx .
sinh(x) hyperbolic sine ofx .
sqrt(x) square root ofx . This also handles negative or complex values.
tan(x) tangent ofx .
tanh(x) hyperbolic tangent ofx .

Note for trigonometric functions that angles are usually represented in radians, not degrees. There
are versions of some trigonometric functions that act in degrees, e.g.cosd , however, it is generally
better to convert to radians by multiplying by2π/360.

Seehelp elfun andhelp specfun for more mathematical functions, andhelp polyfun
for functions related to polynomials.

6.3. SIMPLE VECTOR/MATRIX FUNCTIONS 55

6.3 Simple Vector/Matrix functions

There are also a number of simple functions designed to be useful specifically with vectors or
matrices:

Function Effect
det(A) the determinant ofA.
diag(A) get the diagonal entries of a matrixA.
diag(x) construct a diagonal matrix withx along its main diagonal.
diff(x) returns a vector containing differences of the input, i.e.,xi+1 − xi.
eig(A) eigenvalues and vectors ofA.
eye(N) construct theN x N identity matrix.
find(x) find the indices where the logical vectorx=TRUE
isempty(x) returns TRUE if the matrix/vector is empty.
length(x) number of elements of vectorx .
max(x) maximum element contained in the vectorx .
mean(x) mean value of the elements in vectorx .
min(x) minimum value contained in the vectorx .
norm(A) the matrix norm ofA.
ones(n,m) construct ann x m matrix of 1s.
prod(x) product of the elements of vectorx .
rand(n,m) construct ann x m matrix of rand .
repmat(A,n,m) creates a new array withn × m blocks formed from matrixA.
size(A) the number of rows and columns of a matrixA.
std(x) the standard deviation of the elements ofx .
sort(x) sorts elements of vectorx into ascending order.
sum(x) sum of the elements of vectorx .
trace(A) the trace ofA.
zeros(n,m) construct ann x m matrix of 0s.

Many of the functions above have been described in terms of their vector version (e.g.sum, mean,
max) but have a matrix version. Some likediag do something completely different with a matrix
or a vector, whereas other just generalize the same operation. See the help for these functions for
more details.

Additional functions can be found using the above help commands in addition tohelp matfun
andhelp datafun . MATLAB also has a series of functions to deal with sparse matrices: more
detail can be seen withhelp sparfun .

56 CHAPTER 6. COMMONLY USED FUNCTIONS AND VARIABLES

6.4 Set functions

In MATLAB , we can choose to ignore order in a vector, and treat the vector like a set. There are
special functions for operating on sets. A list of common setfunctions: (assuminga andb are
vectors representing sets) follows.

Function Effect
intersect(a,b) returns intersections of setsa andb.
ismember(a,b) returns 0-1 array of the same size asa which indicates which values of

a are members ofb.
setdiff(a,b) returns elements ofa that are not inb.
setxor(a,b) returns elements ofa andb that are not in the intersection.
union(a,b) returns union of setsa andb.
unique(a) returns a list of the unique elements ofa.

6.5 Test functions
MATLAB has a number of functions designed to test certain conditions. The are commonly used
in conditionals.

Function Effect
exist(name) test if a variable, function or filename exists.
isempty(x) returns TRUE if the matrix/vectorx is empty.
isnan(x) returns true ifx=NaN
isinf(x) returns true ifx=Inf or x=-Inf
isfinite(x) returns true for any case except the above three
isreal(x) returns true ifx is real (not complex)
strcmp(s1,s2) returns true if stringss1 ands2 are identical
isa(x, ’class_name’) tests if variablex is of class’class_name’
isnumeric(x) tests if variablex is a numeric array
islogical(x) tests if variablex is a logical array
ischar(x) tests if variablex is a character array (a string)
ismember(a, s) tests if variablea is a member of sets

Typically these functions can operate on an array input, andreturn a logical array as output.

6.6 String functions

MATLAB has a number of functions specifically for dealing with strings (of characters). A list of
common string functions: (assumings , s1 ands2 are strings) follows.

6.7. DATES AND TIMES 57

Function Effect
char(x) convert an array of integersx into a string of characters.
double(s) convert a strings to an array of integers.
findstr(s1,s2) find the shorter of the two strings in the longer.
lower(s) converts to lower case.
strcat(s1,s2) concatenate two stringss1 ands2 .
strcmp(s1,s2) returns true if stringss1 ands2 are identical.
strtrim(s) remove insignificant whitespace froms .
sprintf(...) similar tofprintf but returns a string.
upper(s) converts to upper case.

The commandhelp strfun will list more possibilities, whilehelp strings reveals basic
information about strings.

6.7 Dates and times

It is often useful to be able to work with times and dates, and MATLAB has a number of functions
for doing so. Some simple time and date related functions are:

Function Effect
clock returns a six element date vector of the form

[year month day hour minute seconds] .
datenum(d) converts a date vectord into MATLAB ’s numerical representation of dates.
datevec(x) converts an internal datex into a date vector.
datestr(x) converts an internal datex into a human readable string.
tic sets a “stopwatch” going.
toc outputs the value of the stopwatch (in seconds).

Commands such astic and toc are useful for comparing computation times of alternative al-
gorithms. Commands such asdatenum anddatestr have many alternative input and output
formats, and can be used quite flexibly to work with dates. When we wish to plot, for instance a
timeseries, with dates along one axis, we use thedatetick command in conjunction with the
above.

6.8 Utility functions

We often need to interact with the file system/workspace of the computer we are operating on, and
MATLAB has functions for doing so. Simple file system/workspace related functions

58 CHAPTER 6. COMMONLY USED FUNCTIONS AND VARIABLES

Function Effect
clear remove variables from the workspace.
cd(’d’) change working directory tod.
dir(’d’) list the files in directoryd.
load filename load variables from a.mat file.
path(’p’) change the search path MATLAB uses to look for.m files.
pause(n) pause a program forn seconds.
pwd display the current working directory.
save filename save all the workspace’s variables to a.mat file.
what(’d’) list MATLAB specific files in a directory.
who lists variables in the current workspace.
whos lists variables in the current workspace in long form.

6.9 More information

One of the strengths of MATLAB is its many useful functions, we have listed only a fraction here.
Use the appropriatehelp and lookfor commands to find more, as well as MATLAB ’s online
documentation. The goal of this chapter has been to give you an idea of what is possible using
MATLAB ’s functions, rather than a complete list, or the details. The brief descriptions provided
here omit many important details, and you should examine thefunction in more detail before using
it (again using thehelp command, or the online documentation).

In addition, MATLAB has many “Toolboxes”, which can be purchased (or sometimes down-
loaded) to add features to MATLAB , primarily by adding functions. Typing the commandver
will provide information on what version of MATLAB you have, and what toolboxes have been
installed. Additional help about these toolboxes is also available.

Finally, MATLAB also has many functions for displaying data, but we shall examine these in
more detail in the following section.

Chapter 7

Graphics

One of the most powerful features of MATLAB is its ability to visualize data using plots. The basic
approach is to use one of a set of functions to create a plot. Once created, features (such as axis
labels) can be added to the plot either by function calls, or by interacting with the GUI of the plot
window. We start this chapter by considering a basic 2D plot of a set of data.

7.1 Basic two-dimensional plots

The most common command to draw a single graph isplot , In its simplest form the command
takes a single vector argument as inplot(y) . In this case the elements ofy are plotted against
their indices, e.g.

y=rand(1,20);
plot(y);

plots20 random numbers against the integers1–20 joining successive points with straight lines as
in figure 7.1(a).

Axes are automatically drawn, and the range of these is scaled to include the minimum and
maximum data points, but “nice” values of the extremes are chosen so that the plot will (hopefully)
look good.

The most common form ofplot is plot(x,y) wherex and y are vectors of the same
length. The plot function uses the first argument as thex locations of data points, and the second
as they locations, and (by default) draws lines between the series of points. For example see
Figure 7.1(b), which shows the following example:

x = 0 : pi/40 : 4 * pi;
y = sin(x);
plot(x, y);

7.2 Decorating the figure

The figures above are not satisfactory. For instance, they have no axis labels, the text is small, and
the graphs are rather bland. In this section we discuss how tomodify and improve our graphs.

59

60 CHAPTER 7. GRAPHICS

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) plot(y)

0 2 4 6 8 10 12 14
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) plot(x,y)

Figure 7.1: Examples of theplot command.

7.2.1 The GUI

When a plot window is created (in recent versions of MATLAB), it has a number of menus, and
icons at the top. For instance, see Figure 7.2, which shows a screenshot of a plot window. These
allow many features you would expect, for instance, the ability to save the figure into a file (many
different formats are supported), or print the figure. The GUI allows us to add labels, legends,
change colours and so on. Individual curves can be selected and their properties (such as colour,
line thickness, or line type) can be changed. The plot can be changed to a bar plot, a stair plot, or
a filled area plot. More importantly, the GUI allows us to viewthe plot interactively. We can use
the magnifying glass icons to zoom in or out of the plot. We canalso rotate the plot, though that
is only really interesting for 3D plots.

The GUI allows us to create careful, well designed plots suitable for inclusion in any high-
quality report or paper. The one problem with the GUI is that it requires manual intervention. It
is common for us to want to produce a set of plots using just ourprogram, for instance, if we are
analysing a hundred data files, we would not want to manually “fix” each of the resulting plots.
So we also need a programatic interface to these features. Wediscuss a large part of this below.

7.2.2 Labels

The following functions add various labels to graphs. In each case, the input arguments is a
string, andx andy are(x, y) co-ordinates on the plot.

Function Effect
title(s) adds the titles above the plot.
xlabel(s) adds the tests as a label for thex-axis.
ylabel(s) adds the tests as a label for they-axis.
text(x, y, s) adds the texts at co-ordinates(x, y).
gtext(s) puts texts where you want it. It puts a cross-hair on the graph window and

waits for a mouse button or keyboard key to be pressed.

7.2. DECORATING THE FIGURE 61

Figure 7.2: Example of a plot window.

The size of the “font” used in labels can be controlled by setting options. For exampletext ,
title , xlabel , ylabel , andlegend allow optional arguments of the form’fontsize’
followed by an integer. The color can be changed using the’color’ option just as for a plot
command (see below). Labels can also include a limited subset of LaTeX commands for mathe-
matical symbols. LaTeX can be used to create greek symbols, superscripts and subscripts and a
small set of other mathematical constructions useful in some labels. For instance, the following
commands, produce the graph shown in Figure 7.3.

x = 0 : pi/40 : 4 * pi;
y = sin(x);
plot(x, y);
title(’Titles appear above the graph’, ’fontsize’, 20)
xlabel(’instead of writing phi we write \phi’)
ylabel(’ylabels are presented vertically’)
text(9.3, 0.2, ’a sin curve’)

62 CHAPTER 7. GRAPHICS

0 2 4 6 8 10 12 14
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Titles appear above the graph

instead of writing phi we write φ

yl
ab

el
s

ar
e

pr
es

en
te

d
ve

rt
ic

al
ly

a sin curve

Figure 7.3: Examples of various labelling command.

7.2.3 Other graph features

There are many other ways we can control the general appearance of our plot, for instance:

Function Effect
axis([xmin xmax ymin ymax]) changes thex andy range of the axes
axis auto returns axes to autoscaling
axis tight makes the axes scaling fit the data tightly
axis ij puts the axis in “matrix” mode where the y values are reversed
axis xy puts the axis in the default Cartesian mode
axis square makes the current axes square
axis normal makes the current axes fit the plot window
axis off turns off all axis labelling
axis on turn axis labelling back on
grid adds/removes grid lines to/from the current graph.
xlim([xmin xmax]) change the range of thex axis
ylim([ymin ymax]) change the range of they axis

7.2.4 Line types, plot symbols and colour

Line types, and plot symbols, and the line colour may all be set when we create a plot. There are
two approaches, firstly, there is an optional input argumentto theplot function that can contain

7.2. DECORATING THE FIGURE 63

a series of “flags” which each indicate something about the resulting plot.

Colour Marker Line Type
Flag Colour Flag Marker Flag Line Type

b blue . point - solid
g green o circle : dotted
r red x x-mark -. dashdot
c cyan + plus -- dashed

m magenta * star
y yellow s square
k black d diamond
w white v triangle (down)

ˆ triangle (up)
< triangle (left)
> triangle (right)
p pentagram
h hexagram

By combining three (or fewer) of these flags, we construct a particular plot, e.g.,

plot(x,y, ’--’)

plotsy againstx and joins the points with a dashed line whereas

plot(x,y, ’o’)

draws circles at the data points with no lines joining them. Combinations are valid, e.g.,

plot(x,y, ’--mo’)

plots a magenta dashed line, with circles at the data points.

The second approach to setting plot characteristics is to include a series of pairs of optional
arguments to the plot command, for instance,

plot(x,y, ’color’, ’m’, ’linestyle’, ’--’, ’marker’, ’o’)

which would draw a plot in the colour magenta, with dashed lines between each point, and the data
points themselves shown by ’o’. A brief list of such arguments is shown in the following table:

Option name Valid values Default Effect
color b,g,r,m,c,y,k,w or a[r, g, b]-color b sets line and marker colour
linestyle ’-’, ’–’, ’:’, ’-.’ ’-’ sets the line style
marker see table above none sets the marker at data points
linewidth positive integers 1 sets the width of lines
markersize positive integers 6 sets the size of markers

Note the American spelling of color. There are many other options for plots (for instance we can
change the colour of the inside and edge of a marker independently). Seehelp plot for more
details.

64 CHAPTER 7. GRAPHICS

7.2.5 Fonts

The font refers to the style of writing used. Typically, the main thing we might change about
a font would be the size. As noted earlier, several commands (e.g. text , title , xlabel ,
ylabel , legend) allow optional arguments of the form’fontsize’ followed by an integer.
For instance we might write:

title(’This is the BIG title’, ’fontsize’, 24);

which would place a title on the plot in a large font. The colorcan also be change using the
’color’ option just as for a plot command (see above). A list of commonoptions for fonts is
included below

Option name Valid values Default Effect
color b,g,r,m,c,y,k,w or a[r, g, b]-color k sets font colour
fontsize positive integer 10 text size in “points”
fontangle normal, italic or oblique normal style of font
fontweight light, normal, demi or bold normal style of font
rotation an angle in degrees 0 rotate the text by the angle

More options can be found in the MATLAB documentation.

However, this will not change the size of text used for numbers on axes. To do so, we need to
change the properties of the current set of axes, which we cando using the command:

set(gca, ’fontsize’, 24);

For instance see the results shown in Figure 7.6 where this command has been used to make the
log axes more readable. The input argumentgca is a variable that MATLAB uses to refer to the
current set of axes. In fact,set(gca, ...) can be used to change many properties of the axes,
including where labels appear, and what labels are used. Another common use is to change the
thickness of the lines used, e.g. by typing

set(gca, ’linewidth’, 3);

but general use ofset is beyond the scope of this course, and we will not cover it in more detail
here.

One final note: although MATLAB is usually case sensitive, the options used above aren’t, i.e.,
’FontSize’ is the same as ’fontsize’.

7.3 Multiple plots

7.3.1 More than one figure

It is common for us to want to see more than one plot at a time. MATLAB allows this through the
figure function. By itself,figure will create a new window, ready for a new plot. If we use
figure(n) , where it has an integer argument, it will either switch to windown, or create a new
windown if one doesn’t exist. For example, we might type something like

7.3. MULTIPLE PLOTS 65

x = 0: pi/100: pi;
y = cos(x);
z = sin(x);
figure(1); % create figure window 1
plot(x,y); % plot (x,y) in window 1
figure(2); % create figure window 2
plot(x,z); % plot (x,z) in window 2

figure(1); % swap back to window 1
ylabel(’y’); % set the y-axis label on window 1
figure(2); % swap back to window 2
ylabel(’z’); % set the y-axis label on window 2

This series of commands will result in two figure windows, plotting x versus y and z, with the
appropriate y-axis labels.

7.3.2 Multiple subplots

Sometimes we want to do multiple plots, but we wish them to appear as subplots on a single
window. We can do this using thesubplot function. The command takes three input arguments,
the first two specify how many rows and columns of subplots should appear. The third specifies
which plot to use. For instance, we could take the two plots from the previous example, and place
them in the same window using the following statements.

x = 0: pi/100: pi;
y = cos(x);
z = sin(x);
figure(1); % create figure window 1
subplot(2,1,1) % create two subplots, one above the other, a nd

% use the first one for the next plot
plot(x,y);
subplot(2,1,2) % use the second subplot for the next plot
plot(x,z);

Figure 7.4(a) shows the result.

7.3.3 Multiple plots on the same graph

It is sometimes preferable to put two plots onto the same graph so that they can be directly com-
pared. We can do this using thehold command. By default, if we call plot twice, the old plot
will be removed and replaced by the new one. However, if we call

hold on

the new plot will be overlaid on the old plot. The commandhold off reverts back to the default
behaviour. For instance, repeating the above example:

x = 0: pi/100: pi;

66 CHAPTER 7. GRAPHICS

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

(a) Two subplots.

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cos
sin

(b) Two plots on the same graph.

Figure 7.4: Examples plotting multiple curves.

y = cos(x);
z = sin(x);
figure(1); % create figure window 1
hold off % remove any old plots on the figure
plot(x,y, ’-’); % do the first plot
hold on % allow us to add an extra plot
plot(x,z, ’--’);% add a second plot, with a different line st yle
legend(’cos’, ’sin’);

The final command above is for creating a legend for the plots.In its simple form, as illustrated
above, we simply calllegend with a a list of string inputs, and these are assigned to the different
plots. Figure 7.4(b) shows the result. Note however, thatlegend has many options.

7.3.4 Plotting a matrix

A faster approach to putting multiple plots onto a single graph is to plot a matrix (rather than a
vector). MATLAB will then produce (by default) one curve for each column of the matrix using
different colours for each line. For instance if we used the following code

x = [0: pi/40 : 2 * pi]’;
Y = [cos(x) sin(x)];
plot(Y);

we would plot both the sine and cosine curves on the same graphin different colours. We can use
the correctx axis using a command like

x = [0: pi/40 : 2 * pi]’;
Y = [cos(x) sin(x)];
plot(x, Y);

and we will get a graph such as shown in Figure 7.5(a) (though in colour). We can make this
more general by turning bothx andy co-ordinates in the plot into matrices. A simple example of
the practicality of this approach is in plotting confidence intervals around data points, e.g., for the
purpose of demonstration use random values as follows:

7.4. PRINTING GRAPHS 67

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

(a) Two subplots.

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) Two plots on the same graph.

Figure 7.5: Examples plotting matrices.

N = 20;
y = rand(1,N); % generate some random data
hold off
plot(1:N, y, ’o’); % plot the data points
ci = rand(1,N)/4; % generate random confidence intervals
Z = [y-ci; y+ci]; % create the matrix
hold on
plot([1:N; 1:N], Z, ’b’) % plot vertical bars showing CIs

which generates the plot shown in Figure 7.5(b).

7.4 Printing graphs

As noted above, we can save or print a graph directly using theGUI of a plot window. However,
we sometimes wish to output a graph from a program. This can bedone using theprint function.
Theprint function has a variable list of input arguments which specify

• The outputdevicewhich is typically the format for the output when saving as a file. Common
example are as an encapsulated postscript file (a.eps file) suitable for inclusion in some
reports, or an image such as a JPEG or PNG file.

• The outputfile when saving.

• Other options (not covered here).

Examples appear in the following table:

Print command result
print(’-deps’, ’file.eps’) print current figure to an EPS file calledfile.eps .
print(’-dpng’, ’file.png’) print current figure to an PNG file calledfile.png .

68 CHAPTER 7. GRAPHICS

There are many other options, file formats, and ways of calling print . Usehelp print for
more details

The size of the output graph can be controlled by setting parameters of the current figure
window, which MATLAB refers to asgcf . For example

set(gcf,’PaperUnits’,’centimeters’,’PaperPosition’, [0 0 10 12]);

would make the figure10 × 12 centimeters in size. There are other properties of a figure that can
be changed to in turn change the output from theprint function.

7.5 Colours

MATLAB allows use of colours in plots. There are several ways to do so. The simplest is to use
the one character codes given above, with their direct association to a colour. However, some
commands do not take such codes, and at other times we wish to use different colours.

There are several approaches, but the most general is to specify a colour as a RGB triple. That
is, we give thered, green andblue component of the colour in a 3 element vector. Many colours
can be expressed in this way, for instance, the common MATLAB colours are shown below:

Color code Color Red Green Blue
b blue 0 0 1
g green 0 1 0
r red 1 0 0
c cyan 0 1 1

m magenta 1 0 1
y yellow 1 1 0
k black 0 0 0
w white 1 1 1

A value of 1 (say for the red component) would mean that component is as strong as possible,
whereas a value of zero means it is not present at all.

More about RGB colours can be found, for instance, athttp://en.wikipedia.org/
wiki/RGB . Example colours can be found athttp://www.pitt.edu/ ˜ nisg/cis/web/
cgi/rgb.html , though note that commonly the RGB values are specified from 0to 255. To
convert to MATLAB values, divide by 255.

An alternative approach to colors sometimes used in MATLAB is to create acolormap . The
colormap maps a set of integers to a RGB triple. It is represented by aN × 3 matrix, where each
row is a RGB triple. An integern is then mapped to the colour of thenth row of the table. Some
plotting commands, such assurf and image (which we will see later) automatically use the
current colormap. MATLAB has a set of predefined color maps that can be used via thecolormap
function. For instancecolormap(’default’) uses the standard MATLAB colormap, and
colormap(’gray’) uses a grayscale (B&W) colormap. MATLAB has a number of built in
examples that demonstrate the power of these color maps, e.g., try

load spine

7.6. ADVANCED TWO-DIMENSIONAL PLOTS 69

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3

(a) semilogx(x,y)

0 2 4 6 8 10
10

0

10
2

10
4

10
6

10
8

10
10

(b) semilogy(x,y)

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

(c) loglog(x,y)

Figure 7.6: Examples of log axes graphs.

image(X)
colormap bone

or

load flujet
image(X)
colormap(jet)

7.6 Advanced two-dimensional plots

MATLAB has many advanced graphing features, and we look at only a fewhere. For more infor-
mation and examples use

help graphics
help graph2d
help specgraph

7.6.1 Base-10 logarithmic plots

It is sometimes beneficial to use plots where one or both axis are presented logarithmically. For
logarithmic data of the formy = k log10(x), the plot ofy versuslog10(x) yields a straight line
of slopek. It follows that for logarithmic data of the formy = k log(x), the plot of y ver-
suslog10(x) yields a straight line of slopek/ log10 e. These can be achieved with the command
semilogx(x,y) , which is almost the same as theplot command, but using a logx axis. For
example the plot

x = [1:1000];
y = log10(x);
semilogx(x,y)
set(gca,’fontsize’,18)

is shown in Figure 7.6(a).

70 CHAPTER 7. GRAPHICS

For exponential data of the formy = 10kx, the plot oflog10(y) versusx yields a straight line of
slopek. (This is sincelog10(y) = kx and a plot ofkx versusx is a straight line of slopek.) It
follows that for exponential data of the formy = ekx, the plot oflog10(y) versusx yields a straight
line of slopek log10 e. These can be achieved with the commandsemilogy(x,y) , e.g.,

x = [0:10];
y = 10 .ˆ x;
semilogy(x,y)
set(gca,’fontsize’,18)

(results shown in Figure 7.6(b)) and

x = [0:10];
y = exp(x);
semilogy(x,y)
set(gca,’fontsize’,18)

For data of the formy = xk, a plot of log10(y) versuslog10(x) yields a straight line of slopek.
(This is sincelog10(y) = k log10(x) and a plot ofk log10(x) versuslog10(x) is a straight line of
slopek.) This can be achieved with the commandloglog(x,y) . For example Figure 7.6(c)
shows the results of

x = [0:100];
y = x.ˆ2.7;
loglog(x,y)
set(gca,’fontsize’,18)

It is useful to note that if we use thehold on command to put more than one plot onto a
graph, the first plot determines the type of axes. So if we specify loglog first, then even if
subsequent commands useplot , all graphs will appear on with the same log-log axes.

7.6.2 Histograms

There is a simple approach to producing a histogram in MATLAB . In is simplest form, we simply
call hist(data) , however, we often want to specify the exact bins being used,or at least their
number and we can do so through an optional second argument. For instance:

data = randn(1000,3); % generate random "Normal" data
hist(data, 30); % do a histogram with 30 bins
set(gca,’fontsize’,18)

Following these commands, MATLAB will automatically scale the bins to include all of the data,
and then generate a figure, as shown in Figure 7.7(a).

When the input data is a matrix (rather than a vector) the histogram will show multiple bars
for each column of the data.

MATLAB also allows us to put the result of the histogram command intoan output vector,
rather than a figure, which we can then plot using the various plotting commands we have already
seen. If we want to do a histogram plot, though, we can so usingthebar command, which draws
a bar plot of a set of data. For instance,

7.6. ADVANCED TWO-DIMENSIONAL PLOTS 71

−4 −2 0 2 4
0

10

20

30

40

50

60

70

80

90

(a) hist(data, 30)

−4 −2 0 2 4
0

20

40

60

80

100

120

140

160

180

(b) bar(x, y)

Figure 7.7: Examples of histograms and bar charts.

data = randn(1000,3); % generate a matrix of data
[y,x] = hist(data, 20); % do a histogram with 30 bins, but don’ t plot
bar(x, y);
set(gca,’fontsize’,18)

the results of which are shown in Figure 7.7(b).

7.6.3 Thefill function

The fill function allows us to fill in a polygonal area with a particular colour. The command is
executed as follows:

fill(x, y, colour)

wherex andy vectors specify thex andy co-ordinates of the vertexes of the polygon, and colour
specifies the fill colour in one of the formats above (either a letter code or a RGB triple).

An example of the fill command appears below. The code below draws a rainbow. The code
constructs an (approximate) elliptical arc for the outsideand inside of each “bow” of the rainbow
(i.e. for each colour). The code then puts the outer and innerarc together to approximate a circular
arc which it then fills with the correct color (specified in thearraycolors).

% draw a rainbow
N = 50;
step = 0.07;
r = 1:-step:1-7 * step;
theta = 0:pi/N:pi;
alpha = 1.4;
colors = [[1 0 0]; % red

[1 0.5 0]; % orange
[1 1 0]; % yellow
[0 1 0]; % green

72 CHAPTER 7. GRAPHICS

[0 0 1]; % blue
[0.3 0 0.4]; % indigo
[0.2 0 0.3]; % violet

];
figure(1)
hold off
plot(0,0)
hold on
for i=1:length(r)-1

x1 = alpha * r(i) * cos(theta);
y1 = r(i) * sin(theta);
x2 = alpha * r(i+1) * cos(fliplr(theta));
y2 = r(i+1) * sin(fliplr(theta));

x = [x1 x2];
y = [y1 y2];

% plot(x, y, ’.’);
fill(x, y, colors(i,:));

end
axis equal % make the scales on the two axes equal
axis tight % fit the axes tightly around the plot

The output of which is shown in Figure 7.8.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 7.8: Output of rainbow.m.

7.6.4 Images

Displaying images is simple, but there are several details to get right. Firstly, there are two main
representations of an image. We can represent it as an array of numbers that are mapped to colors
via a colormap, or as an 3D array where two dimensions represent the 2 spatial dimensions of an
image, and the third allows us to store the components of the colours (for instance the RGB triple).
When creating or reading an image, it is important to understand what format it will be in. See
documentation forimread to learn more.

7.6. ADVANCED TWO-DIMENSIONAL PLOTS 73

The main command for displaying an image is the creatively nameimage(C) function. IfC is
aM×N matrix, the values will be mapped to colors in the display using the current colormap (see
Section 7.5). If the colormap is subsequently changed, thenthe image will change colours. The
functionimagesc scales the values ofC to the potential range of the colormap before displaying.

If C is aM × N × 3 array, then it will be displayed interpreting each of the triples as RGB
colours, i.e.,C(:,:,1) , C(:,:,2) and C(:,:,3) are interpreted as red, green and blue
intensities, respectively. The colormap is ignored. The range of values forC depends on its type.
For a standarddouble array, the range is[0, 1], but if the array uses an integer type such as
uint8 the range is[0, 255]. Care must be taken when importing data that the type is correct.

We create a simple example below

N = 250; M = 250; alpha = 0.001;
x = 1:N;
y = 1:M;
[X,Y] = meshgrid(x,y);
C = exp(-alpha * ((X-N/2).ˆ2 + (Y-M/2).ˆ2));
colormap(’gray’); % change the colormap to B&W
image(255 * C); % show the image using the colormap
axis image; % make the axes look right

% create a RGB image
C(:,:,1) = exp(-alpha * ((X-N/2).ˆ2 + (Y-M/2).ˆ2));
C(:,:,2) = exp(-alpha * ((X-N/2).ˆ2 + (Y-M/2).ˆ2));
C(:,:,3) = exp(-alpha * ((X-N/2).ˆ2 + (Y-M/2).ˆ2));
image(C);
axis image;

7.6.5 Others

There are many other MATLAB functions for drawing plots:

• plotyy : Sometimes we wish to plot two curves with different scales on the same plot.
plotyy does this with one axis on the left, and the other on the right.

• pie : allows us to draw a pie chart.

• polar : draw a plot of polar co-ordinate data.

• stem : does a “stem” plot, showing lines growing from thex axis with a marker at the
top. Often used in discrete signal processing, along with stairstep plots, which we can draw
withstairs .

• contour : allows one to draw a contour plot of some set of data. For example, if a matrix
Z represented heights, then a contour plots would show curvesof constant height.

• quiver : allows plots of a vector field. There are many other volume and vector visualiza-
tion functions.

74 CHAPTER 7. GRAPHICS

• movie in conjunction withgetframe can be used to create animations that can then be
saved as movies.

There are many others: rose plots, waterfall plots, Voronoidiagrams, Pareto charts, comet charts
and so on. However, rather than considering each, we shall goon to consider another large group
of plots, those in 3D.

7.7 Three-dimensional plots

MATLAB has a number of functions for displaying and visualising data in three dimensions. The
functionplot3 is the 3-D version ofplot , which is called in the following form:

plot3(x, y, z)

wherex , y andz are (typically) vectors specifying the(x, y, z) co-ordinates of a series of points.
This command draws a picture of the 3-D curve through the points whose coordinates are the
elements of the vectorsx , y andz . As an example

z = 0 : pi/50 : 10 * pi;
x = exp(-0.02 * z) . * sin(z);
y = exp(-0.02 * z) . * cos(z);
plot3(x, y, z);
xlabel(’x-axis’);
ylabel(’y-axis’);
zlabel(’z-axis’);

produces the inwardly-spiralling helix shown in figure 7.9.Theplot3 command admits the same
types of options as the 2Dplot command, so we can set line colour and style, the marker types,
and linewidth. We can also control the axes as before, and even place text on the graph using
labels, or the text command called with four input parameters, e.g.,

text(x,y,z, ’text we wish to write’);

The figure’s GUI also allows the same types of options as before, but there is an additional
useful button for 3D plots. The image displayed is really a 2Dprojection of the 3D curve we wish

to examine. The rotate button allows us to use the mouse to rotate the projection that we see
so that we can examine the curve from different perspectives. The viewpoint can be changed in
the program using theview function.

7.7.1 Mesh surfaces

Another standard activity in 3D is to plot a representation of a surface. For instance, imagine we
wished to plot the function:

f(x, y) = 5y − x2

over the range−4 ≤ x ≤ 4 and0 ≤ y ≤ 5. The simple approach to plotting such a function is to
calculate it at a set of sample points, and plot an approximation of the surface at these points using
themesh command.

7.7. THREE-DIMENSIONAL PLOTS 75

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
0

5

10

15

20

25

30

35

x-axisy-axis

z-
ax

is

Figure 7.9: An example ofplot3 .

Naively, we can compute the function at a series of points on this range using nestedfor
loops:

for column = 1:7
x(column) = column-4;
for row = 1:6

y(row) = row-1;
Z(row, column) = 5 * y(row) - x(column).ˆ2;

end
end

This will result in

x = [-3 -2 -1 0 1 2 3]

y = [0 1 2 3 4 5]

Z =
-9 -4 -1 0 -1 -4 -9
-4 1 4 5 4 1 -4

1 6 9 10 9 6 1
6 11 14 15 14 11 6

11 16 19 20 19 16 11
16 21 24 25 24 21 16

However, this approach is rather clumsy and inefficient. A preferable approach is

76 CHAPTER 7. GRAPHICS

step = 1;
x = -3:step:3;
y = 0:step:5;
[X,Y] = meshgrid(x,y);
Z = 5* Y - X.ˆ2;

which produces the same vectorsx andy , and matrixZ. It also creates the matrixX with the rows
equal to the vectorx , and matrixY with columns equal to the vectory . This approach has the
advantages that it is more efficient (faster), and also allows us to change thestep parameter to
plot more, or fewer points as needed. The statements

mesh(X, Y, Z);
set(gca,’fontsize’, 24);
xlabel(’x’);
ylabel(’y’);

then plots the surfaceZ as a “wire frame”, where the matrices provide the(x, y, z) co-ordinates on
the surface we wish to plot. In our case, because we have a regular grid, we might also have called
mesh(x,y,Z) . In each case, we might imagine the valuesZ as heights on a map of terrain at
each(x, y) co-ordinate. The plot produced by these commands in shown inFigure 7.10(a). Note
that by default MATLAB will use colours from the current colormap to highlight changes in value
(i.e., the range of values ofZ will be scaled and mapped to the colormap and these colors will be
used to change the mesh).

An alternative to a mesh surface is to fill in the rectangles between points using thesurf
function. For instance, the above surface can be displayed as in Figure 7.10(b) using

surf(x, y, Z);
set(gca,’fontsize’, 24);
xlabel(’x’);
ylabel(’y’);

Again MATLAB uses colours from the current colormap to highlight changesin value. The
“faceted” view shown by default insurf can be smoothed by changing theshading mode of
the plot. The default isfaceted interpolation, but we can also useflat to get rid of the mesh
lines, orinterp to make the shading color smooth so that we see an apparently smooth surface.
Figures 7.10(c) and 7.10(d) show the results of the following commands:

surf(x, y, Z); shading flat;
surf(x, y, Z); shading interp;

More information on 3D plots can be found from the individualhelp for each function, and
from help graph3d .

7.7. THREE-DIMENSIONAL PLOTS 77

−5
0

5

0

5
−20

0

20

40

xy

(a) mesh(x,y,Z)

−5
0

5

0

5
−20

0

20

40

xy

(b) surf(x,y,Z)

−5
0

5

0

5
−20

0

20

40

(c) surf(x,y,Z); shading flat;

−5
0

5

0

5
−20

0

20

40

(d) surf(x,y,Z); shading interp;

Figure 7.10: Examples of surface and mesh plots.

78 CHAPTER 7. GRAPHICS

Chapter 8

Defining Functions with M-files

As we have seen, MATLAB has many built in functions. However, it is common for us to wish to
create our own functions. This allows us to encapsulate a group of MATLAB statements. Encapsu-
lation improves code re-usability, by enabling us and others to reuse the same function more than
once without retyping the same code. It improves code maintainability by allowing us to fix a bug
in one place (in the function) rather than in all of the placeswe might have used that function.

We call thismodularityin programming. It separates the internal logic of a function from the
interface— the inputs and outputs of the function. Modularity is particularly important for large
software systems, where more than one programmer may be working on the system. It allows the
two programmers to work on separate code without knowing thedetails, except for the function
interfaces. Other programming languages provide modularity in various ways (e.g. subroutines,
procedures, etc.), but MATLAB ’s primary approach is to allow us to define our own functions.

Another reason to use functions in MATLAB is that they will often run faster than the equivalent
script file.

8.1 Some examples

We will start with a couple of illustrative examples of function definitions. As when creating script
.m files, we will use MATLAB ’s editor to input the commands into a file.

8.1.1 Harmonic oscillators

If two coupled harmonic oscillators are considered as a single system, the output of the system as
a function of timet could be something like

h(t) = cos(8t) + cos(9t).

We can create a function.m file calledharmonic.m with the following two lines

function h = harmonic(t)
h = cos(8 * t) + cos(9 * t);

79

80 CHAPTER 8. DEFINING FUNCTIONS WITH M-FILES

Then we can then call the function in another piece of MATLAB code, for instance at the MATLAB prompt,
just as we do for other functions, e.g.,

x = pi/2;
y = harmonic(x);

Note the following:

1. The name of the function — what we type when we want to call it— is defined on the first
line of the file by the statementfunction y = harmonic(t) . The filename of the.m
file must match this name, for instance in this case we save thefile asharmonic.m .

2. The variablet in the functionharmonic.m is the input variable. It implicitly creates a
variable calledt inside the function. The variable will be initialized with the value of the
corresponding input variable in the function call. In this example, it will start with the value
pi/2 , obtained from the variablex . Note that if we changet inside the function, it has no
effect onx . The input serves only to set the initial value oft and thereafter the connection
betweenx andt is broken.

3. The variableh in the function file is theoutput variable. We must assign a value toh at
some point in our function.m file. The value we assign will be passed out to the output
variable when we call the function. For instance in the example, the value ofh inside the
function will be assigned to the variabley , after the function is finished.

4. It is good coding practice to always use semi-colons at theend of lines in MATLAB functions
so that the function has no unintended “side-effects” such as printing out intermediate val-
ues. However, we may ignore this guideline during debuggingof a function.

5. We don’t have to use a variable as input to a function, we could also use an expression, or
another function. We can also pass vectors and matrices as inputs, for instance

y = harmonic([0:pi/40:6 * pi]);
plot([0:pi/40:6 * pi], y);

We sometimes talk ofinput argumentsinstead of input variables. They are the same thing (likewise
for output arguments).

8.1.2 Statistics

Consider the following more general example which calculates the mean and the standard devia-
tion of the values in the vectorx . We’ll save this function in a file calledstats.m .

function [average, standard_deviation] = stats(x)
% Calculates the mean and standard deviation of
% the data in the vector x.
average = mean(x);
standard_deviation = std(x);

We can now test it with some random numbers:

8.2. THE BASIC RULES FOR FUNCTION FILES 81

r = rand(100,1);
[ave,st_dev] = stats(r)

The function will calculate the mean and standard deviationof the input (random) numbers, and
will pass these to the output variablesave andst_dev .

8.2 The basic rules for function files

A function M-file name.m has the following general form.

function [out1, out2,... ,outN] = name(inp1, inp2,... ,inp M)
% comments to be displayed by help
statements
out1 = expression1;
out2 = expression2;
...

where... is used here to indicate that there may be an indefinite numberof input and output
variables (you would not type this). The function would typically be called by typing

[o1, o2, ... , oN] = name(i1, i2, ... ,iM);

The rules that wemustfollow when defining a function are as follows:

1. The function name and the name of the file containing it mustbe identical except for the
.m filename extension. Remember MATLAB is case sensitive. It is suggested that you use
lower-case for function names as this will increase portability of your code to other operating
systems.

2. The function name must follow MATLAB ’s rules for variable names, as must the input and
output variables.

3. The function file must start with the reserved wordfunction , followed by a vector of the
outputs, and equals sign, the name of the function, and roundbrackets with a list of input
variables.

4. If there is only one output variable square brackets are not necessary (even if it is a vector).
If there is more than one output variable, the output variables must be separated by commas
and enclosed in square brackets (as with a vector). This is true both in the function definition,
and when we call a function.

5. If an output is unassigned, this may cause an error, so we need to have at least one statement
assigning values to each output variable. Often these statements are at the end of a function
file. They don’t have to be, but it can improve program readability to place them there.

6. Note that if the function changes the value of any of its input variables the change does not
affect the corresponding variable used in the call to the function.

82 CHAPTER 8. DEFINING FUNCTIONS WITH M-FILES

8.2.1 Optional inputs and output

We don’t need to call a function with all of its inputs and output variables. The input variables that
are not assigned will be undefined until they are given a valuein the program, as will unassigned
outputs. For instance, we could call

r = rand(100,1);
ave = stats(r);

This code would assign the variableave the value of the internal output variableaverage , but
the output variablestandard_deviation is not assigned to any workspace variable.

Likewise, we can define a functionadd_them_up that adds two numbers, when we input
two, or just outputs the original value when we only use one input as follows. It uses the function
exist to test whether the second variable exists and reacts appropriately.

function result = add_them_up(x,y)
if (exist(’y’,’var’))

result = x+y;
else

result = x;
end

We can now call this function two different ways

add_them_up(1, 3)
add_them_up(4)

and in both cases it will output the value 4.

This type of construction allows us to have optional inputs to a function, with default arguments
when an input is not used. It is somewhat limited, because it is dependent on order. We can’t omit
input parameterN , but includeN+1. A better approach might be to use an input variable structure,
but this is outside the scope of this course.

The above mechanism is also quite clumsy when the number of inputs is large. To aid in this
MATLAB automatically creates two extra variables when a function is called:

Variable Meaning
nargin The number of input variables for this function call.
nargout The number of output variables for this function call

We could use these in the above example be rewriting the function as follows:

function result = add_them_up(x,y)
if (nargin == 2)

result = x+y;
else

result = x;
end

8.2. THE BASIC RULES FOR FUNCTION FILES 83

An even more flexible mechanism is to usevarargin or varargout in place of all or
part of the list of input arguments. This allows us to specifyexplicitly that we don’t know the
number of input or output arguments. This type of mechanism is used in functions such asplot
to allow us to specify an arbitrary number of options to the command, or infprintf to allow us
to provide an arbitrarily long list of variables to substitute into the format string. We will no go
further into this type of construction here, but it is important to realize that such facilities exist.

8.2.2 Scope

The input variables (inp1 , inp2 , ...) and output variables (out1 , out2 , ...) are the function’s
means of communicating with the workspace. The input variables allow you to pass in values
to the function, and the output variables allow values to be passed out. There can be some other
interactions, for instance if the function reads a file, or presents at plot, but typically these do not
pass values in or out of the workspace.

Variables defined inside a MATLAB function havelocal scope. This means that they cannot be
seen outside of this function. We cannot obtain their values, or interact with these variables in any
way. For instance, they will not appear in the workspace. Even the implicitly created input and
output variables cannot be accessed outside the function except at the start (for input variables)
and the finish (for output variables).

There are various reasons for this. Firstly, it is highly desirable to minimize the side-effects of
functions. This makes program behaviour more predictable.Side-effects can have unanticipated
consequences!

Secondly, giving function variables local scope improves the modularity of code. It simplifies
the interface between the function and other programs. It makes the interface as simple as calling
the function, e.g.

[ave,st_dev] = stats(r)
The result is that MATLAB functions are easy to use without necessarily examining allof the
MATLAB code in the function. We just need to look at the first line of the function to see how to
call it. In essence, we can treat a MATLAB function as a black-box that performs an action, and
we don’t need to understand how it does it.

The third important result of local scope is that we avoidname collisionsbetween variables
inside and outside the function. Say I want to use a complex function defined by third party. It
may define many internal variables. I don’t want to have to make sure all of my variables have
different names. For instance, they may use the common namex inside their code, and I may
want to usex for something different outside of the code. I don’t want to have to check that will
be OK. This problem may sound trivial, but imagine I am calling a hundred different functions
each with its own variable names. If there was overlap in the namespaces, then not only might
my names collide with the functions’ variable names, but also the functions might have collisions
between each others variables. Local scope of internal variables guarantees that variables can
co-exist peacefully within their own functions.

It is possible to create “global” variables that are accessible elsewhere in the MATLAB program.
However, this mechanism should very rarely be used for the reasons described above, and so we
will not describe how to create such variables here.

84 CHAPTER 8. DEFINING FUNCTIONS WITH M-FILES

8.2.3 Nested functions

One function can call another function! In fact this is common, particularly with respect to
MATLAB ’s built in functions. We will defer discussion of functionsthat call themselves (recur-
sivefunctions) until Section 8.5. Apart from the examples above, a simple example of a function
that calls another function is one we used earlier,normal_cdf(x) , which calculates the normal
distributions cumulative distribution function in terms of M ATLAB ’s built in function erf(x)
(which calculates the “error” function).

function result = normal_cdf(input)
% compute the CDF of the normal distribution using matlab’s
% built in erf function
result = (1 + erf(input / sqrt(2)))/2;

We can also define a new function inside another function. Forinstance MATLAB .m file may
also contain extra sub-functions (extra functions defined inside the same file). Such functions
are only visible to the main function defined inside the file. Each starts with its own function
definition line. We discourage this, from a programming style perspective, because the scope rules
for such functions become complicated, and the behaviour offunctions with the same name is also
complicated, and it is easy for program to become confusing.

8.2.4 Example: Newton’s method re-visited

Newton’s method may be used to solve a general equationf(x) = 0 by using the iterative process

xn+1 = xn − f(xn)

f ′(xn)
,

wheref ′(x) is the first derivative of the functionf(x). We can write a general script to implement
Newton’s method by first writing M-files for the functionf(x) and f ′(x). Let’s consider the
particular example off(x) = x3 +x−3. Using an editor we create and save a filef.m containing
the function we are interested in

function y = f(x)
% function of interest: f(x)=xˆ3+x-3
y = xˆ3 + x - 3;

and another filef dashed.m containing its derivative

function y = f_dashed(x)
% function of interest’s derivative: f’(x)=3xˆ2+1
y = 3 * xˆ2 +1;

We now need to write ourscriptfile, newton2.m , which will stop when either the absolute value
of f(x) is less than10−8 or after20 steps of the iterative process.

% Newton’s method example 2
format long
steps = 0; % a counter for the number of steps
x = input(’Initial Guess: ’);

8.2. THE BASIC RULES FOR FUNCTION FILES 85

tolerance = 1.0e-8;

while (abs(f(x)) >= tolerance) & (steps < 20)
x = x - f(x) / f_dashed(x);
disp([x f(x)])
steps = steps + 1;

end

if abs(f(x)) < tolerance
disp(’Zero is at approximately ’)
disp(x)

else
disp(’Zero not found after 20 steps’)

end
Here’s an example of the output starting with an initial guess of 1.5

Initial Guess: 1.5

1.25806451612903 0.24923634654762
1.21470533274159 0.00701403868629
1.21341278623619 0.00000608597942
1.21341166276308 0.00000000000459

Zero is at approximately
1.21341166276308

8.2.5 Programming style

Apart from the usual programming style guidelines we have already explained, there are some
additional style considerations when we write MATLAB functions.

Comment lines up to the first non-comment line in a function file will be displayed ifhelp is
requested for the function name. This allows us to put interesting information about the function
in a place that is easily accessible without reading the file itself. It is common to use these lines
of comments to define (i) what the function does, (ii) what itsinputs and outputs are, and (iii)
to provide meta-information such as the author of the function, its version, and the dates it was
created and revised.

The first line of a MATLAB function’s comment, and its the function name are also used in
lookfor command. Hence we should (i) choose a meaningful function name, and (ii) carefully
select the first line of comments to make this function easy tofind.

It is good coding practice to always use semi-colons at the end of lines in MATLAB functions
so that the function has no unintended “side-effects” such as printing out intermediate values.

It is also good practice to avoid redefining common functions. This will avoid simple bugs in
code where a function gives an unexpected result.

In any programming language, care should be taken to check input arguments carefully! This
makes good sense, as a user of a function may not have read the documentation carefully and may

86 CHAPTER 8. DEFINING FUNCTIONS WITH M-FILES

make a mistake in calling the function. Also, failing to check validity of input arguments is a
major source of security holes in various pieces of computercode. We generally omit such checks
in our examples, to keep them short and simple, but they should not be omitted in practice.

Finally, we should (almost) never use global variables.

8.3 Function names as input variables withfeval

It is possible that we don’t know the function we wish to call when we are writing our program.
For instance, we might wish to use Newton’s method (above) for a function that a user inputs. We
need a way of computing the result of a function, where the function name is held in a variable.
To do so we use thefeval function, for instance:

feval(’sqrt’,9)

would give the answer 3 (the square root of 9). Sofeval(’sqrt’,x) is the same assqrt(x) !

The first argument offeval is astring(i.e. a name enclosed within single quotes) representing
the function to be evaluated. The subsequent inputs tofeval acts as inputs to the function of
interest.

In our earlier Newton iteration scheme it would be useful if we could write a general script that
accepts the function as an input variable – this would make the script that much more general (and
useful). We would therefore like to callnewton as follows:

x0 = 1.5;
[x f conv] = newton(’f’, ’f_dashed’, x0)

where’f’ and’f dashed’ are the names of the function M-files containingf(x) andf ′(x) that
we previously defined, andx0 is the initial guess. The outputs are the approximate location of the
zero, the function value at the zero (which should be close tozero) and a variableconverged to
indicate whether or not the output process has converged. The complete, new, M-filenewton.m
is as follows:

function [x, f, converged] = newton(fn, derivative_fn, x0)
% Newton iteration
% Performs Newton iteration to find the root of
% function fn with derivative derivative_fn.
% Initial guess is x0. Returns the final value of
% x and f(x) and the flag converged (1 =
% convergence, 0 = divergence).

steps = 0;
tolerance = 1.0e-8;
x = x0;

while (abs(feval(fn,x)) >= tolerance) & (steps<20)
x = x - feval(fn,x) / feval(derivative_fn,x);
disp([x feval(fn,x)])
steps = steps + 1;

8.4. INLINE AND ANONYMOUS FUNCTIONS 87

end

f = feval(fn,x);
if (abs(f) < tolerance)

converged = 1;
else

converged = 0;
end

Now we can call the function as required above, i.e.,
x0 = 1.5;
[x f conv] = newton(’f’, ’f_dashed’, x0)

but we could also call it as
x0 = 1.5;
[x f conv] = newton(’sin’, ’cos’, x0)

and we would now find a zero of the sine function. This gives us alot more power to create
numerical routines that are not tied to particular functions, but can instead take the function of
interest as a input. This is a common approach for many optimization routines or DE solvers.

An alternative, slightly more general, method to implementthe same process is to usefunction
handles. We can obtain a handle to a function using the@symbol. The handle is analogous to a
pointer inC, but it is outside the scope of this course, so we shall simplynote that more information
can be found usinghelp function_handle .

8.4 Inline and anonymous functions

Sometimes, we have a very short function that we want to use several times in a program, but don’t
think is worth creating a separate.m file for. We can use aninline function for such a function.

cube=inline(’xˆ3’); % define the inline function
y = cube(3);

The above code would sety = 27, the cube of 3.

The function (and its input arguments) is specified implicitly in the string ’xˆ3’ . Inline
functions don’t leave much space for comments, and are not always as clear as a proper.m file, so
we generally avoid their use except for trivial functions.

Anonymous functions are functions without a name. MATLAB has methods for constructing
such functions, and keeping a reference (a handle) to them without a name, but these are beyond
the scope of this course.

8.5 Recursion

Many mathematical functions are definedrecursively, that is, they are defined in terms of them-
selves. For instance, the factorial function may be defined recursively as

n! = n × (n − 1)!

88 CHAPTER 8. DEFINING FUNCTIONS WITH M-FILES

provided we define0! = 1. MATLAB allows functions to call themselves; a process that is called
recursion. We can write a M-file for the factorial function,fact.m :

function y = fact(n)
% Factorial function
% Recursive evaluation of n!

if n == 0
y = 1;

else
y = n * fact(n-1);

end

The above function simply calculates the value of0! to be 1, but when we call it forn > 0,
it calculates the value by calling itself again. The programterminates (for non-negative integer
inputs) because each time it decrements the input argument to the recursive call of itself.

In general recursion isnotefficient. An iterative approach to the same calculation, e.g.,

function y = fact(n)
% Factorial function
% Iterative evaluation of n!

y = 1;
for i=1:n

y = y * i;
end

would be much faster. In fact, because of the additional memory used by all of those function calls,
the recursive approach may fail for largen. In addition, a great deal of care must be taken that the
recursion terminates, and we don’t fall into an infinite recursion. The recursive implementation of
factorial given above would fall into infinite recursion if the input argument is not an integer. Care
should be taken to check input arguments carefully!

In point of fact, the above is still not the most efficient approach in MATLAB . We can create a
vectorised approach as follows:

function y = fact(n)
% Factorial function
% Vectorized evaluation of n!

if n == 0
y = 1;

else
y = prod(1:n);

end

which would be faster again.

However, there are some programing tasks which are relatively easy using recursion, but quite
hard using an iterative approach. The Tower’s of Hanoi problem is a classic case. The puzzle was
invented by the French mathematician douard Lucas in 1883, and we describe it below.

8.5. RECURSION 89

Towers of Hanoi: There is a legend about an Indian temple which contains a large room with
three time-worn posts in it surrounded by 64 golden disks of different sizes. The priests of
Brahma, acting out the command of an ancient prophecy, have been moving these disks, in
accordance with the rules: they must move all of the disks from one post to another but may
never place a larger disk on a smaller.

The trick, in this puzzle, is to realize that to move all 64 disks, we need only move the top 63,
then move the bottom disk to the third post and move the top 63 disks onto the third post as well.
Likewise, we can move the 63 disk stack by first moving the 62 disk stack, and so on. Therefore
this problem has an obvious recursive implementation. The following function implements this,
and illustrates how it works.

function disks = move_subtower(disks, n, i, j, do_plot);
% move a subtower of size n from post i to j

if (nargin < 5)
do_plot = 0;

end

if (do_plot)
plot_disks(disks);
pause;

end

if (n==1)
disks = move_disks(disks, i, j);

else
k = setdiff([1:3], [i j]);
disks = move_subtower(disks, n-1, i, k);
if (do_plot)

plot_disks(disks);
pause;

end

disks = move_disks(disks, i, j);
if (do_plot)

plot_disks(disks);
pause;

end

disks = move_subtower(disks, n-1, k, j);
if (do_plot)

plot_disks(disks);
pause;

end

90 CHAPTER 8. DEFINING FUNCTIONS WITH M-FILES

end

The inputs are a vector giving the pole each disk is on (assuming they are in order of size), the
number of disks to move, and the two posts we wish to move a stack between, plus an optional
argument that will allow us to plot the results. The functionuses two other functions, one that
moves individual disksmove_disks ,

function disks=move_disks(disks, i, j);
% move the top disk from post i to post j
% really should also check for errors
k = max(find(disks == i));
disks(k) = j;

and one to plot the towersplot_disks ,

function plot_disks(disks);
% plots disks

n = length(disks);

figure(1)
hold off
plot(0,0)
hold on
for i=1:3

plot([i i], [0 n+1], ...
’k’, ’linewidth’, 10);

end
set(gca, ’xlim’, [0 4]);
set(gca, ’ylim’, [0 n+2]);

n_disks = 0.5 * ones(3,1);
for i=1:n

disk_ra = 0.5 * (1 - i/(n+1));
post = disks(i);
plot([post-disk_ra post+disk_ra], ...

[n_disks(post) n_disks(post)], ...
’linewidth’, 20);

n_disks(post) = n_disks(post) + 1;
end

We would call the function as follows:
N = 7; % do a stack of 7 disks
disks = ones(N,1); % initially all disks are on post 1
plot_disks(move_subtower(disks, N, 1, 3, 1));

8.5. RECURSION 91

Note, however, that this program makes two recursive calls for each level of the tower to be
moved, so the total number of recursive calls for a tower of height N would be2N , which grows
quite quickly. For instance, so a stack of 64 disks, we would require264 ≃ 2× 1019 function calls.
The universe is not in any immediate danger!

92 CHAPTER 8. DEFINING FUNCTIONS WITH M-FILES

Chapter 9

0-1 vectors

As we have seen, MATLAB is more efficient when we can use vector operations instead offor
loops. Vectorization of matrix of some operations is very natural, but other operations need some
thought. In particular, the best approach to vectorise conditional statements (if-else ’s) is not
always obvious. One handy trick is the use of logical vectors(vectors of logical variables). Logical
variables are represented in MATLAB as 0’s (FALSE) and 1’s (TRUE), and so we sometimes call
these0-1 vectorsand matrices. To introduce this concept first carry out the following at the
MATLAB prompt:

r = 0:0.2:1
z = (r <= 0.5)

When vectors are involved in logical expressions such as thesecond step above, the comparison
is carried outterm-by-term. The brackets are not necessary, but make the statement morereadable
by clarifying that a logical vector is being assigned toz . If the comparison is true for a particular
element of the vector, the resulting vector has a1 in the corresponding position, otherwise it has a
0. Thus the response to these commands will be

r =
0 0.2000 0.4000 0.6000 0.8000 1.0000

z =
1 1 1 0 0 0

We can see that the vectorr is constructed to take values from 0 to 1 in steps of 0.2. The vector
logical z takes values of 1, where1 is less than (or equal to) 0.5 and values of0 otherwise. The
whos command returns

Name Size Bytes Class Attributes

r 1x6 48 double
z 1x6 6 logical

Note that the logical arrayz takes only 6 bytes (one byte for each term in the vector), and so it is
much more compact than a double array (though it could be morecompact still as it onlyneeds1
byte for each eight elements).

We can easily construct other 0-1 vectors, e.g.,

93

94 CHAPTER 9. 0-1 VECTORS

r = 0:0.2:1;
z = r == 0.4

which returns

z =
0 0 1 0 0 0

Note that in the statement the first= sign is an assignment operator (it assigns the value of the
right-hand side to the variablez). The second “double”== is thecomparisonoperator that tests
wherer is equal to 0.4.

We can use vector and matrix operations to work on logicals just as we can for other variables,
for instance a. * product acts like and AND operation, e.g.,

r = 0:0.2:1;
z = (r <= 0.5)
y = (r >= 0.2)
x = z . * y

results in

z =
1 1 1 0 0 0

y =
0 1 1 1 1 1

x =
0 1 1 0 0 0

We could have obtained the same result with

x = z & y

where& is MATLAB ’s AND operator. Other logical and arithmetic operators canbe combined to
construct more complicated expressions. Combinations of logical and numerical vectors can also
be used to great effect as we shall see in the following examples.

9.1 Combining logical and numerical vectors

The key to vectorization of conditional statements is the combination of logical and numerical
expressions. We explore this through several examples.

9.1.1 Avoiding division by zero:

Suppose we want to plot thesinc function over the rangex ∈ [−2π, 2π]. Typically we consider
the sinc function to besin(x)/x. We can, of course, set up a vector containing thex-values

x = -2 * pi : pi / 20 : 2 * pi;

and then calculate

9.1. COMBINING LOGICAL AND NUMERICAL VECTORS 95

y = sin(x) ./ x;

In this case MATLAB will return the error messageWarning: Divide by zero and at
x = 0 the vectory will contain NaN(Not a Number).

However, the precise definition of the sinc function is

sinc(x) =

{

sin(x)/x, x 6= 0
1 x = 1

The formal definition above explicitly removes the problem at x = 0. We can easily check that
the resulting function is continuous, and defined everywhere, hence the limit asx → 0 of the sinc
function is 1. We exploit this by computing the function at a value very close to zero, rather than
at zero. We will replace the element wherex==0 by x = eps . This is a special MATLAB value
that is defined at the difference between1 and the next largest number that can be represented in
MATLAB ; it has the valueeps = 2.220446049250313e-16 . To remove the troublesome0
from x we can use

x = x + (x == 0) * eps;

The expressionx == 0 returns a 0-1 vector with a single1 in the position corresponding to the
zero element;eps is only added to this value, so that the new vector is identical to the old, except
that it no longer has a zero value anywhere. We can now plot thegraph of sinc(x) correctly using

x = -2 * pi : pi / 20 : 2 * pi;
x = x + (x == 0) * eps; % change x=0 to x=eps
y = sin(x) ./ x;
plot(x,y)

The beauty of the above approach is we don’t assume thatx is equal to zero anywhere. If no term
of the vector is ever zero, then the statementx = x + (x == 0) * eps; has no affect. It
only effects those places wherex==0 .

9.1.2 Using 0-1 vectors to replaceelse-if ladders

Income tax in Australia depends in a non-linear way on your income. As your income increase,
the marginal tax— the tax you pay in each extra dollar of income — increases in aseries of
steps. The rates, as of 2007-2008 are given athttp://www.ato.gov.au/individuals/
content.asp?doc=/content/12333.htm&mnu=5464&mfp=001 /002 as

Taxable Income Marginal Tax Rate Total Payment
<$6,000 0.00 Nil
$6,001-$30,000 0.15 15c for each $1 between $6,000-$30,000
$30,001-$75,000 0.30 +30c for each $1 between $30,000-$75,000
$75,001-$150,000 0.40 +40c for each $1 between $75,000-$150,000
>$150,001 0.45 +45c for each $1 over $150,000

ignoring the medicare levy. The above table expressed income tax rates in the standard form
presented to the public, but another way to write these is to look at the ratedifferences, e.g., the

96 CHAPTER 9. 0-1 VECTORS

difference between the tax bracket from $30,000-75,000 and$6,000-30,000 is0.3 − 0.15 = 0.15.
For each dollar above the relevant tax bracket we pay this extra differencein the income tax. In
tabular form:

Taxable Income Difference Total Payment
<$6,000 0.00 Nil
$6,001-$30,000 0.15 15c for each $1 above $6,000
$30,001-$75,000 0.15 +15c for each $1 above $30,000
$75,001-$150,000 0.10 +10c for each $1 above $75,000
>$150,001 0.05 +5c for each $1 above $150,000

The naive approach to this calculation would be to use a complex series ofif statements in an
if-else ladder. Note that we use thediff function to calculate the tax rate differences.

tax_rate = [0 0.15 0.30 0.40 0.45];
tax_rate_diff = diff(tax_rate);
tax_threshold = [6000 30000 75000 150000];
income_tax = 0;
if (income > tax_threshold(1))

income_tax = (income-tax_threshold(1)) * tax_rate_diff(1);
if (income > tax_threshold(2))

income_tax = income_tax + (income-tax_threshold(2)) ...

* tax_rate_diff(2);
if (income > tax_threshold(3))

income_tax = income_tax + (income-tax_threshold(3)) ...

* tax_rate_diff(3);
if (income > tax_threshold(4))

income_tax = income_tax + (income-tax_threshold(4)) ...

* tax_rate_diff(4);
end

end
end

end

Imagine that we were the tax office and wished to calculate theincome tax for all 20 million or so
Australians. In this case the variableincome would be a vector. Given theif statements above,
the only viable approach would be to put a (very) bigfor loop around the above code. As we
know, in MATLAB this will be inefficient. It is also inelegant – for instance it assumes that the
number of tax brackets will not change. The better option in MATLAB is to use a combination of
logical and numerical operations.

We can replace this complex series of statements with a much shorter piece of code, which we
given in the form of a function.m file below.

function tax = income_tax(taxable_income)
% Calculate income tax.
%
% file: tax.m, (c) Matthew Roughan, Thu Apr 10 2008

9.1. COMBINING LOGICAL AND NUMERICAL VECTORS 97

%
% Income tax rates financial year 2007-2008
% http://www.ato.gov.au/individuals/content.asp?doc= /content/12333.htm&
% Taxable income Tax on this income
% <$6,000 Nil
% $6,001-$30,000 15c for each $1 between $6,000-$30,000
% $30,001-$75,000 +30c for each $1 between $30,000-$75,000
% $75,001-$150,000 +40c for each $1 between $75,000-$150,0 00
% >$150,001 +45c for each $1 over $150,000
% ignoring medicare levy
%
% Inputs:
% taxable_income = a vector or matrix of incomes
%
% Outputs:
% tax = a vector or matrix the same size as the input
%

tax_rate = [0.0 0.15 0.30 0.40 0.45];
tax_rate_diff = diff(tax_rate);
tax_threshold = [6000 30000 75000 150000];

tax = zeros(size(taxable_income));
for i=1:length(tax_rate_d)

tax = tax + tax_rate_diff(i) * ...
(taxable_income - tax_threshold(i)) . * ...
(taxable_income > tax_threshold(i));

end

You will note that the majority of the code is comments; the actual calculation code is only a
couple of lines. There is still afor loop, but this is a for loop across the number of tax brackets,
not the length of theincome vector. This adds flexibility in the number of brackets, but more
importantly, the calculation is done using vector operations, rather than a loop.

9.1.3 Converting marks to grades

In the part of this course on Excel we coxnsidered convertinga series of marks into grades accord-
ing to the following table:

Mark Grade Letter code
< 50 Fail F

50-64 Pass P
65-74 Credit C
75-84 Distinction D

85-100 High Distinction H

98 CHAPTER 9. 0-1 VECTORS

Here we denote each grade by a single letter code, and we seek to construct a vector of such codes
from a vector of marks. The following code does so:

mark = 100 * rand(100,1); % generate 100 random marks between 0-100
grade = (mark < 50) * ’F’ + ...

(mark >= 50 & mark < 65) * ’P’ + ...
(mark >= 65 & mark < 75) * ’C’ + ...
(mark >= 75 & mark < 85) * ’D’ + ...
(mark >= 85) * ’H’;

grade = char(grade)

The code relies on the fact that we can treat characters as numbers, and that the logical vectors
being constructed will not overlap (i.e., the intersectionof values where more than one is true is
empty). The final step converts the numbers back into characters.

9.2 Additional tests

We can test ifall of the elements of a logical vector are true using theprod command as follows:

check_all = (prod(some_logical_vector) == 1)

The logical variablecheck_all will take the value 1, iff all of the elements of the vector
some_logical_vector are 1, and it will otherwise be 0. We can test ifat leastone of a
logical vector is true using thesum function, e.g.,

check_at_least = (sum(some_logical_vector) > 0)

The variablecheck_at_least will take the value 1 if at least one of the elements of the vector
some_logical_vector is 1, and 0 otherwise.

9.3 Thefind function

An important function, in the context of logical vectors, isthefind function. The function returns
the indices at which a logical vector is true. For example:

r = 0:0.2:1;
z = find(r <= 0.5)

will return

z =
1 2 3

This indicates that the conditionr <= 0.5 is true for the first terms of the vectorr . Another
simple example is

r = 0:0.2:1;
z = find(r == 0.4)

which returns

9.3. THEFIND FUNCTION 99

z =
3

because only the third element ofr == 0.4 is true.

The find function returns an empty vector when there are no true elements. We can test this
using theisempty function, for example:

r = rand(10,1);
k = find(r < 0.1);
if (˜isempty(k))

disp(’the following values are < 0.1’);
disp(r(k));

else
disp(’no results found’);

end

The code finds values of the random vectorr that are less than 0.1, and prints them out, but if none
are found, we writeno results found .

The find command is often useful. For instance, in the example above of plotting thesinc
function, theNaNfrom our computation of by addingeps to the zero term does have a limitation.
It assumes that our calculation ofsin(x)/x is still accurate for small values ofx. In this case, it
does not cause a problem, but for some other functions it might. An alternative is to replace the
final values ofy with the correct value. For instance:

x = -2 * pi : pi / 20 : 2 * pi;
y = sin(x) ./ x;
y(find(isnan(y))) = 1;
plot(x,y)

Thefind function looks for indices ofy wherey=NaN, and replaces these values ofy with 1.

For more information onfind including how to use it for matrices, usehelp find .

100 CHAPTER 9. 0-1 VECTORS

Chapter 10

The Optimization Toolbox

Toolboxes add extra functionality to MATLAB . One extremely useful toolbox is the Optimization
Toolbox. We can use this to solve a variety of optimization problems, such as those discussed ear-
lier. However, we don’t need it for simple problems. As notedearlier, we can program a bisection
search (or other) to find zeros and other function propertiessuch as maxima. The place where
the optimization toolbox comes into its own is where we have complex optimizations problems,
for instance of the linear programming type. We will consider this case below, but note that the
Optimization toolbox has a range of functions: seehelp optim for more details.

10.1 Linear Programming

We now consider a problem where we have more than one variable, a linear objective function,
and a series of linear constraints. We call such a problem alinear program , and there are good
reasons to consider such problems, and good techniques for their solution.

This particular example came out of Ragsdale, page 20. The problems originates from a hy-
pothetical company Blue Ridge Hot Tubs that sells two types of hot-tubs (saunas): Aqua-Spa and
Hydro-Lux. The manager of BRHT needs to know how many of each tub to produce.

She wishes to maximise her profit each cycle [each month, say]subject to supply constraints
[on labour and inputs]. Each hot tub needs one pump and the supply of pumps is at most 200 per
month. The Aqua-Spa tub needs 12 feet of copper tubing in its construction, while the Hydro-Lux
uses 16 feet and we can only get 2889 feet of tubing per month. Each Aqua-Spa tub needs 9 hours
of labour to construct, while the Hydro-Lux needs 6 hours, but there are only 1566 man hours of
workers available per month. [BTW Aqua is water in Latin, Hydro is water in Greek (cute!)]. The
profit from the sale of an Aqua-Spa tub is $350 and for the Hydro-Lux tub $300.

We now introduce decisionx1 andx2 which represent the number of Aqua-Spa tubs and the
number of Hydro-Lux tubs made in each cycle. We then wish to maximise the profit

P = 350x1 + 300x2

101

102 CHAPTER 10. THE OPTIMIZATION TOOLBOX

subject to the constraints

x1 + x2 ≤ 200

12x1 + 16x2 ≤ 2889

9x1 + 6x2 ≤ 1566

and of coursex1 ≥ 0 andx2 ≥ 0. The first constraints says that the number of pumps is limited to
200, the second refers to the available copper tubing, and the third to the total available man-hours.
Actually we should also require thatx1 andx2 be integers (half a hot-tun isn’t worth much), but
we will won’t try to do this here.

In MATLAB , we need to represent this problem in the formminimize

f
′ ∗ x

subject to the constraints

A ∗ x ≤ b

Aeq ∗ x = beq

,

andl ≤ x ≤ u. Here, we usex as a vector of the variables (in this casex1 andx2), andl andu are
lower and upper bounds on the variables. In general, it is nothard to transform a linear program
into this form. Some tricks that are useful are

• If the original problem is a maximization, then we simply multiply the objective function by
-1 to obtain a minimization problem.

• the vectorf used in the objective function is just given by the co-efficients in the linear
objective function, e.g., in the example

f = −(350, 300)′.

• If a constraint has a≥ sign, then we can transform it to have a≤ sign by multiplying by -1.

• If a variable doesn’t have an upper bound, e.g., in the problem above, then we can useInf
in place of a number in the vectoru. Similarly with -Inf for lower bounds.

• One or the other of the equality, or inequality constraints may be empty. In the example
problem there are no equalities so we setAeq = [], beq = []; .

• The rows ofA are made up of the co-efficient of the same row of the constraints, e.g., in our
example

A =

1 1
12 16
9 6

10.2. WHY USEMATLAB FOR OPTIMIZATION 103

• the vectorb is made up of the right-hand side of the constraints, in the same order they
appear, e.g., in our example

b =

200
2889
1566

One the problem has been constructed, we can find the optimal solution using thelinprog
function, which is part of the Optimization Toolbox. It takes a variable number of arguments, but
to solve the above problem, we would call it usingx=linprog(f,A,b,Aeq,beq,l,u) .

So in the example problem, our MATLAB code to construct and solve the linear programming
problem would be

f = -[350; 300];
A = [[1 1];

[12 16];
[9 6]];

b = [200; 2889; 1566];
Aeq = [];
beq = [];
l = zeros(2,1);
u = [Inf; Inf];
x = linprog(f,A,b,Aeq,beq,l,u)

which outputs
Optimization terminated.
x =

122.0000
78.0000

There are a variety of additional input terms, or output terms that one can use to specify initial
solutions, numbers of iterations, objective function values, and so on. Seehelp linprog for
more details.

There are other optimization routines, both in the Optimization toolbox (e.g.fgoalattain)
and elsewhere that allow us to mimic most of the possibilities in Excel, and some others as well.

10.2 Why useMATLAB for optimization

MATLAB and Excel both allow us to solve optimization problems. Whenshould we use one, or
the other. Often it is a matter of person preference – use whichever you are most comfortable
with. For many people this will be Excel, because they consider it easier to enter the optimization
problem constraints through a spreadsheet. However, MATLAB does have distinct advantages over
Excel.

• MATLAB can solve much larger optimization problems than Excel (problems with more
variables and more constraints). The exact numbers will depend on versions, and hardware,
but typically we might be able to solve problems 10 times larger in MATLAB with roughly
equivalent systems. MATLAB is typically a lot faster as well.

104 CHAPTER 10. THE OPTIMIZATION TOOLBOX

• MATLAB enables the solution of many optimization problems. For instance, it is easy, in
MATLAB , to write an optimization inside afor loop, and thus execute it (with some dif-
ferences presumably) each time the loop is executed. For instance, each iteration might
load a new set of data from a different file. The outputs of eachoptimization could then be
automatically sent to a file.

• MATLAB facilitates using the outputs of previous programming as the inputs to our opti-
mization. For instance, the constraint matrixA might be constructed using other functions.
The same can be done in Excel, but if things like the number of constraints change then this
is not so easy to cope with whereas in MATLAB it is trivial.

The features make MATLAB more suitable when optimization is to be done on large problems, or
frequently, or as part of an automated system.

Finally, there are even better tools for solving optimization problems. Some can handle much
larger problems even than MATLAB . However, one thing most other sophisticated tools have in
common is that problems are specified (mathematically) in a similar way to that above, so it isn’t
going to waste your time to learn MATLAB ’s approach.

Chapter 11

MATLAB Roundup

11.1 More stuff

In addition to the many features which we have mentioned but not described in detail, MATLAB has
many other features we have not discussed at all:

• MATLAB has a large array of mathematical functions not mentioned here for many tasks.
Toolboxes add to this functionality considerably.

• Ability to build new GUIs for specific tasks;

• MATLAB has built in debugging, lint and profiling tools.

• Lots of technicalities,e.g.,function overloading:it is possible to have two functions with
the same name, where the one that is called depends on the input arguments;persistent
variables:variables with local scope that can keep a value in between function calls; error
handling; and so on.

• An interface toC, so that C-code can be used directly from MATLAB (see MEX files). Also,
MATLAB has interfaces to the system in which it runs (i.e., it can call other programs).

• There are alternative data structures such asstruct which allows a more object oriented
approach in MATLAB , and acell array which allows us to construct arrays of any other
datatype, e.g. strings.

• There are many toolboxes which come complete with additional function and features in-
cluding, for instance, the parallel processing toolbox, and symbolic manipulation toolbox.

11.2 Limitations

MATLAB does have limitations:

105

106 CHAPTER 11. MATLAB ROUNDUP

• It is much faster than Excel, but still not the fastest possible way to program. Where multiply
nested loops are needed, there are faster ways of programming. If vector/matrix operations
are used, it can be quite fast, but still better performance may be achieved through carefully
optimized low-level code.

• MATLAB is not particularly efficient in its (default) storage of variables. The standard is to
always used double precision floating point, which is good much of the time, but may be
overkill at 64 bits per variable.

• MATLAB ’s string handling is not the easiest to program – there are better tools such as Perl.

• Lack of associative arrays (hashes) is sometimes annoying (to me).

• MATLAB will have trouble if you need to access low-level machine dependent components,
such as registers.

11.3 Summary

MATLAB also shows us the same set of concepts that we first saw in Excel, i.e.:

• variables: a value that we can change or control. In MATLAB , variables can have almost
arbitrary names that we choose. MATLAB variables are different from Excel variables in
that they have atype , which we can access (viawhos) or change, to effect the amount of
memory stored, or the accuracy of floating point numbers. However, MATLAB cannot store
a formula into a variable (though a reference to a function can be).

• vectors, and matrices:are a standard data structure in most computing environments, and
of great use in maths, in particular when we have a group of numbers. MATLAB allows us
to store vectors and matrices into variables.

• functions:are a useful way of representing something (usually mathematical) that we want
to do with some data.

• reference:is how we include other data into our functions. In MATLAB , we make a reference
to a variable explicitly when calling a function, or using a variable’s value in an expression.

• graphing:can be used to visualise data in various ways.

• mapping: values from say a number to a grade can be easily performed using conditional
statements (e.g.if).

• sorting: data into order, either numerically, or alphabetically.

• filtering: to see only values that match a particular criteria. In MATLAB we do this using
0-1 vectors.

• optimisation: where we seek to maximise or minimise some quantity (e.g. profit, or rev-
enue).

11.3. SUMMARY 107

• constraints:limits on our variables.

• iteration:, i.e., repeating some set of steps. MATLAB provides explicit constructs for itera-
tion (e.g.for andwhile loops).

• conditionals:in MATLAB are expressed via anif statement allow us to execute code con-
ditional on variables.

In MATLAB these concepts are often more explicit in that they are supported by specific language
constructs, rather than implicitly, or by function calls asthey are in Excel.

There are additional concepts we have seen here, such as

• vectorization: writing formula such that they can be applied to vectors canspeed up calcu-
lation not just in MATLAB , but also in specific graphics applications, and other areas.

• modularity: breaking code into meaningful modules (in MATLAB we use functions to do
this).

• scope: variables defined inside a MATLAB function cannot be seen outside of this function
unless they are explicitly given global scope. This avoids name collisions.

• recursion: a function may call itself, and we call this type of functiona recursive function.

• performance: most tasks can be implemented in many different ways. Part of the job of a
programmer is implementing the program efficiently.

• style: correctness is not the only task when writing code. We also need to write read-
able/maintainable code, and coding style can help this dramatically.

