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Section 1

Connectivity



Connectivity

Definition

Two nodes are connected if a path exists between them.

Definition
A graph is connected if all pairs of nodes are connected.

Definition
A strongly connected digraph is connected in the sense above, whereas a
weakly connected digraph is connected if we include all reverse links.

Definition

A graph is k-edge connected if the graph remains connected after the
removal of any set of k — 1 edges, and k-node connected if the graph
remains connected after the removal of any set of kK — 1 nodes.
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Definition (Cut)
A cut is a partition of the nodes of a graph into two subsets C = (S, T).

v

Definition (Cut-set)
The cut-set of a cut C = (S, T) is the set of edges

{(u,v) € Elue S,ve T}

i.e., the edges that cross the cut.

Definition (Edge Cut)

An (minimum) edge cut is the minimum number of edges whose removal
disconnects two nodes i and j, i.e., a minimal cut-set with i € S and
JjeT.

Matthew Roughan (School of Mathematical ¢ March 7, 2024 4/20



Menger's theorem

Theorem (Edge-connectivity version)

For an undirected graph G, the size of the minimum edge cut for an
arbitrary pair of nodes i # j is equal to the maximum number of
edge-disjoint paths from i to j.

o Edge-disjoint means they share no common edges

@ There is also a node connectivity version

@ It also works for digraphs and infinite graphs

@ The theorem is generalised in many optimisation algorithms: e.g.,
maximum flow algorithms.
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Connected Components

@ A connected component is a maximal connected subgraph

@ The set of connected components {C;} form a partition of the nodes

Definition (Partition)

A partition is a set of covering and disjoint subsets, i.e, {C;}7_; is a
partition of C iff

JUG=c and GnG=2¢, Vi)
i=1

v
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Connected Components Algorithm

Data: A Graph G = (N, E)

Result: A set of connected components {C;}
1 Initialise N/ = N;

2 while (N # ¢) do

3 Choose a node i € N’ and delete it from N/;
4 Set G; = {i} and L = {(i,))|(i,j) € E};

5 while (L # ¢) do
6

7

8

9

Choose a link (k, m) € L;

if m¢ C; then

add mto C;;

delete m from N';
10 add all links (m,/) € E to L;
11 end
12 delete (k, m) from L;
13 end
14 end

Matthew Roughan (School of Mathematical ¢ March 7, 2024 7/20



Connected Components Example

G,
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Connected Components Example
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Connected Components Example
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Connected Components Example
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Connected Components Example
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Application 1

Key requirements for critical infrastructure networks (e.g., Internet, Water,
Power, ...)

o Reliability
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Application 1

The simplest definition of “reliability” used in networks is some variant of
k-connectedness

@ The particular variant depends on the failure modes of the network
» do the nodes fail, or the edges (or both)?

@ Leads to network designs with redundancy
» not necessarily k-fold redundancy

@ Is this a good enough definition of reliability
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Application 2

Markov chains probability transition matrix

0.0 1.0 0.0 0.0 0.0 0.0
05 00 08 04 02 0.0
0.0 00 0.0 0.0 0.8 0.0
0.5 0.0 0.0 0.0 0.0 0.0
0.0 00 0.0 0.6 0.0 0.0
0.0 00 0.2 0.0 00 1.0
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Application 2

Markov chains are described by a directed graph with self-loops, e.g.,

Matthew Roughan (School of Mathematical ¢

The transition matrix is just a weighted adjacency matrix.



Application 2

First step of studying a Markov chain is to check its properties
Definition J

State i is accessible from state j if it is possible to get from i to j.

Accessible = a path from i to j exists

Definition
A Markov chain is irreducible if it is possible to get to any state from any
state.

Irreducibility = strong connectivity of the graph
Definition J

A communicating class is a maximal set of mutually accessible states.

Communicating class = connected component
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Section 2

Graph Traversal



@ Connected components as described above has a little vagueness
» when | say “choose” how do you choose?
@ It's an example of graph traversal

» where we want to visit each node of a graph (at least once)
» ordered nodes by connectivity

@ Traversals used for lots of algorithms

» could be to search for an element
» or to calculate a value for each node

Maybe you don't have the whole graph stored in memory, but have to
read bits, e.g., traversing Facebook graph
@ There are two main strategies

» Depth-First Search
» Breadth-First Search

@ For the sake of simplicity, we will assume graphs are connected

o Easiest to understand in neighbour-list representation
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Depth-First Search

Visit a neighbour’s children before you visit the next neighbour

1

2

Function DFS(G, N;
Input: A Graph G = (N, E), and start node i € N
label i as explored;

3 forall j € neighbourhood{i} do

4 if j is unexplored then
5 | DFS(G, );

6 end

7 end

@ We could make this faster by avoiding edges going backwards.

@ At the moment the algorithm doesn’t do anything

» a search also checks something about the node, and returns the first

one that checks out
» but we might also do some sort of update
» or use to find a connected component ...
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Breadth-First Search

Visit all neighbours before you visit their children

1 Function BFS(G, 0);
Input: A Graph G = (N, E), and start node i € N
2 label i as explored;
3 create queue Q;
4 pution Q;
5 while Q not empty do

6 take j off the front of Q;

7 forall k € neighbourhood{;} do
8 if k is unexplored then

9 label k as explored;

10 put k on Q;

11 end
12 end
13 end
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Depth-First Search Example
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Depth-First Search Example
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Breadth-First Search Example

i=1, Q= [1]
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Breadth-First Search Example
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Breadth-First Search Example
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j=1, Q= [2]




Breadth-First Search Example
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Breadth-First Search Example

j=2, Q= [4,3]
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Breadth-First Search Example
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Breadth-First Search Example

I =4, 0= 3, 6]
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Breadth-First Search Example
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Breadth-First Search Example

J=3, Q=1[6, 5]
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Further reading |
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