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Section 1

Binary operators



Binary Operators

@ Disjoint union GU H

@ Graph products based on the Cartesian product of the vertex sets:
» Cartesian product GOH
» Tensor product G x H
» Strong product G x H
» Lexicographic product G e H
» Rooted product G o H
@ Others (not discussed here)
» Clique sum
» Corona and Zig-zag products
» Series and Parallel compositions
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Disjoint union G U H

@ For two graphs G and H with disjoint node sets, i.e.,
N(G)NN(H) = ¢
the disjoint union G U H is the graph formed by taking the union of
the nodes and edges, i.e.,
N(GUH) = N(G)UN(H)
E(GUH) = E(G)UE(H)

(9}

@ Properties

» Commutative (for unlabelled graphs)
» Associative (for unlabelled graphs)

@ Graph join: disjoint union with all edges that join nodes from G to H
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Cartesian product of vertices/nodes

e Cartesian (or direct) product defined on two sets X and Y

o Cartesian product of two sets of nodes results in all pairs of nodes
with one from each set

XxY={(x,y)|xeXandye Y}

> its just a generalised vector

@ Number of members of product
X x Y| = |X] x |V

@ Generalizes to n-ary products
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Properties of Cartesian Products

@ Associative (effectively)
Xx(YxZ)y=(XxY)xZ

@ Doesn't commute X X Y # Y x X

» order is important
> in some of what follows we can ignore order because unlabelled graphs
are isomorphic

@ Distributive over intersections
Ax(BNC)=(AxB)n(Ax ()

and unions
Ax(BUC)=(Ax B)U(Ax ()
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Cartesian product of graphs

e N(GOH) = N(G) x N(H)
@ any two vertices (u, u') € GOH and (v, V') € GOH are adjacent iff
one of the following is true
» u=vand (v,Vv') € E(H); or
» v =V and (u,v) € E(G)
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Example Cartesian Product 1

The Cartesian product of two (single) edges is a cycle with four vertices

G
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Example Cartesian Product 2

The Cartesian product of an single edge and a path graph is a ladder graph

G
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®
®
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Example Cartesian Product 3

The Cartesian product of two path graphs is a grid graph.
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Example Cartesian Product 4

More complicated example
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Properties Cartesian product of graphs

Commutes in the sense that GOH ~ HOG
Associative in the sense that FO(GOH) ~ (FOG)OH

Square symbol O used because Cartesian product of two edges is a
“box" (a cycle with four edges).

@ A Cartesian product is bipartite if and only if each of its factors is.

Matthew Roughan (School of Mathematical ¢ March 7, 2024 12/33



Cartesian product: Why?

@ Ladder graphs approximate connectivity in some networks
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@ bi-connectivity is easy to achieve in a simple “cookie cutter” manner
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Kronecker or Tensor product A® B

Kronecker product of matrices A and B

3118 e al,,B
A® B = :
amB -+ amB

@ bi-linear and associative

@ non-commutative

A® B # B® A (in general)
@ transposition is distributive over Kronecker product
Ao B)T=AToBT

@ lots of other well-known properties
See http://en.wikipedia.org/wiki/Kronecker_product
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Tensor product of graphs G x H

@ Tensor product (direct product, categorical product, cardinal product,
or Kronecker product) G x H
@ Defined by
» N(G x H) = N(G) x N(H)
> any two vertices (u, u’) and (v, v’) are adjacent iff (v/,v') € E(H) and
(u,v) € E(G)
» That is v is adjacent to v in G and v’ is adjacent to v in H.
e Equivalent to taking the Kronecker (or tensor) product of the
adjacency matrices of G and H.

AcxH = AH ® Ag
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Example Tensor product

G
H (1,a) (1,
X =
(2,a) (2,b)
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Tensor product by adjacency matrices

G
H (1,a) (1,
X =
(2,a) (2,b)
0 0 01
(1)e(za)-[nor
1 000
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Tensor product properties

@ There can be multiple (or no) factorizations of a graph into different
tensor products.

o If either G or H is bipartite then their tensor product is also.

@ The tensor product is connected iff both G and H are connected, and
at least one factor is non-bipartite.
@ Properties derived from those of Kronecker products

» bilinear
» associative
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Strong product G * H

@ Defined by
» N(G * H) = N(G) x N(H)
» any two vertices (u, u’) and (v, v’) are adjacent iff
* (u',v') € E(H) and (u,v) € E(G); or
* u=vand (u,v') € E(H); or
* v =v' and (u,v) € E(G)
> lts like the union of the Cartesian and Tensor products.
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Strong product G * H

Example network design pattern (within a PoP)

Distribution

Access
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Lexicographic product G ¢ H

@ Lexicographic product (graph composition) G ¢ H
@ Defined by
» N(GeH)=N(G)x N(H)
» Any two vertices (u, u’) and (v, v') are adjacent iff
* (u,v) € E(G); or
* u=vand (v,V') € E(H)
» This is the first one in which order is really important

* non-commutative
* Lexicographic order = dictionary order
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Example Lexicographic product
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Example Lexicographic product
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Rooted product G o H

@ Product of G with rooted graph H
@ Defined by
» N(GoH)=N(G)x N(H)
» Take the root of H to be h € N(H)
» Any two vertices (u, u’) and (v, v') are adjacent iff
* ' =hand v =hand (u,v) € E(G); or
* u=vand (,v') € E(H)
» Imagine taking |N(G)| copies of H, and associating the root of H with
each node of G.
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Example Rooted Product

G
‘ H (1,a
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. (2,a (2,b)

. (3,6): (3,b):
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Example Rooted Product
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Rooted Product Properties

@ Non-commutative
o If G is also rooted then G o H is rooted.

@ The rooted product of two trees is a tree.
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COLD part I

@ COLD generated PoP-level map
@ Use graph products to construct the layer below

» multiple-routers as part of PoP
» multiple links between PoPs (for redundancy)
» structure inside the PoP
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Section 2

Operators on a graph and an edge
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Binary Operators on a graph and an edge

@ Deletion (E < E\e)

o Insertion (E <~ EUe)
o Edge contraction
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Edge Contraction

@ Merge two adjacent nodes along an edge e = (u,v), u,v € N, u# v.
e New graphs G’, which has
» nodes N = (N\{u, v}) U{w}
» edges E' = E\{e}
> every edge (u, i) € E is replaced by (w,i) € E’
(and the same for links (v, i) € E)
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Section 3

Operators on a graph and a node
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Binary Operators on a graph and a node

@ Deletion

» remove node n from the graph
> also delete all edges (n,7) € E from the graph

@ Insertion
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Further reading |
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