Duality rules

Matthew Roughan

July 12, 2017

Duality rules

Primal
Dual

1. $\max z=\sum_{j=1}^{n} c_{j} x_{j}+z_{0} \quad \min w=\sum_{i=1}^{m} y_{i} b_{i}+z_{0}$
2.
3.

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \quad y_{i} \text { free }
$$

$$
\sum_{j=1}^{\substack{j=1 \\ n}} a_{i j} x_{j} \leq b_{i} \quad y_{i} \geq 0
$$

4.

$$
\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} \quad y_{i} \leq 0
$$

5.

$$
x_{j} \geq 0
$$

$$
\sum_{i=1}^{m} y_{i} a_{i j} \geq c_{j}
$$

6.

$$
x_{j} \leq 0 \quad \sum_{i=1}^{c=1} m y_{i} a_{i j} \leq c_{j}
$$

7.

$$
x_{j} \text { free } \quad \sum_{i=1}^{m} y_{i} a_{i j}=c_{j}
$$

Complementary Slackness Relationships: At optimal solutions \mathbf{x} for (P) and \mathbf{y} for (D), the following relationships must hold:

1. $x_{j}\left(\sum_{i=1}^{m} y_{i} a_{i j}-c_{j}\right)=0, \quad j=1, \ldots, n$.
2. $\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i}=0, \quad i=1, \ldots, m$.
where
3. is redundant if $\sum_{i=1}^{m} y_{i} a_{i j}=c_{j}$ in (D), i.e., the x_{i} are free.
4. is redundant if $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$, in (P), i.e., the LP has equalities.
