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Section 1

Linear Programming
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Linear equations and inequalities

We will need some tools to understand the shape of a region defined by
linear inequalities

We have n variables xi , so x ∈ Rn

We have m inequalities defining the shape of the feasible region

Ax ≤ b,

where
I A is an m × n matrix
I b is a length m column vector

Also we have n non-negativity constraints x ≥ 0

Let’s see what we can say/do about this region.

Note that when we use ≥ or ≤ for vectors in this course, we mean, for
each element of the vector.
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The Feasible Region

There are four possibilities: the feasible region could be

equal to Rn

I only if there are no constraints

empty
I if the constraints leave no feasible points

a subset of Rn

I bounded
I unbounded

We’ll need to think about this a little more, but there is a problem we do
know something about: solving linear equations.
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Converting to standard form

We will always want to put problems into the standard form above, which
has

Ax ≤ b

If you have any ≥, then convert them to ≤ by multiplying the inequality
by −1

Example

Replace
2x − 4y ≥ 3

with
−2x + 4y ≤ −3
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Converting to standard form

We will always want to put problems into the standard form above, which
has

x ≥ 0

If any xi are free, replace by two new variables x+i ≥ 0 and x−i ≥ 0 such
that xi = x+i − x−i
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Converting to standard form

Example

max z = 3x1 + 2x2
subject to

2x1 + x2 ≤ 5
x1 + 3x2 ≤ 7

x1 ≥ 0, x2 free

and replace it with

max z = 3x1 + 2x+2 − 2x−2
subject to

2x1 + x+2 − x−2 ≤ 5
x1 + 3x+2 − 3x−2 ≤ 7

x1 ≥ 0, x+2 ≥ 0, x−2 ≥ 0

and when you finally obtain a solution, go back to x2 = x+2 − x−2
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Converting Inequalities to Equations

We want to use 1st year maths – in particular your experience with linear
equations so we need to convert the inequalities into equations.

The standard process is to introduce slack variables: e.g.,

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

becomes
a11x1 + a12x2 + · · ·+ a1nxn + s1 = b1

where s1 is a slack variable.
By construction s1 ≥ 0.
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Inequalities and Equations

In matrix form
A′x′ ≤ b

becomes
Ax = b

where

A =
[
A′
∣∣ I ], x =



x ′1
...
x ′n′
sn′+1

...
sn′+m


So now there are m equations and n = n′ + m variables.
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Interpretation

A′x′ ≤ b

m constraints (inequalities)

n′ variables

A′ is an m × n′ matrix

defines a region which is a
convex polytope of Rn′

vertices are a feasible
intersection point of m of the
boundary planes

non-negativity restricts to
positive quadrant

⇔ Ax = b

m constraints (equalities)

n = n′ + m variables

A is an m × n matrix

defines an n′ dimensional
hyperplane in Rn

“vertices” are points where
the hyperplane intersects axes

I n′ = n −m of the variables
are 0

non-negativity restricts to
positive quadrant
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Inequalities and Equations

n' = 2
m = 1

n  = 3
m = 1

2d hyperplane

x1 + x2  ≤ 1 x1 + x2  + s3 = 1

convex
region

x1

x2

x1

x2

s3x1, x2  ≥ 0 x1, x2, s3 ≥ 0
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Inequalities and Equations

We need to become expert at converting back and forth between
equalities and inequalities, and their interpretation.

I when you are on a boundary, it means
F either a slack variable corresponding to an inequality is zero

Example

original inequality x + y ≤ 10
slack variable equality form x + y + s = 10

on the boundary s = 0 x + y = 10

F or one of the xi = 0

I vertices are intersections of boundaries, so several variables must be
zero, one for each boundary that’s intersecting

We also need to see how to convert a LP back and forth between
equality and inequality form.
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Converting from equality to inequality

Imagine we want to convert the equality

x + y = 10

Into an inequality form. We can replace the equality with

x + y ≤ 10

x + y ≥ 10

Or, in standard form

x + y ≤ 10

−x − y ≤ −10
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Standard equality form of a LP

There are several alternatives we could end up with in all of these
conversions, so we choose one standard, that we will always aim for.

Definition (Standard equality form)

An LP of the form

max z = cTx

subject to Ax = b

x ≥ 0

is said to be in standard equality form.
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Standard equality form of a LP

Converting to standard form
1 Convert into standard inequality form

I this isn’t strictly necessary, but makes everything more consistent

2 Convert inequalities into equalities
I introduce slack variables
I coefficients of c corresponding to slack variables are 0

3 Convert to a max 1

I easy to convert by taking min z = max(−z)

Example

max z = 2x1 + 4x2

is equivalent to
minw = −2x1 − 4x2

1Matlab’s linprog works with min problems, so you need to know how to convert,
backwards and forwards.
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Converting a LP

Example

Let us consider the LP:
max z = x1 + x2
subject to

x1 + 2x2 ≤ 6
x1 − x2 ≤ 3

x1 ≥ 0, x2 ≥ 0.

We write this as a system of linear equations, by introducing 2 slack
variables x3 and x4, and leaving the objective unchanged

max z = x1 + x2
subject to x1 + 2x2 + x3 = 6

x1 − x2 + x4 = 3

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Note we often don’t use special notation for the slack variables.
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Basic feasible solution

Remember from Lecture 2

Definition (Basic solution)

A basic solution to Ax = b is a solution with at least n −m zero variables.

We can add to this:

Definition (Basic feasible solution)

If a basic solution satisfies x ≥ 0, then it is called a basic feasible solution.

That is, the solution is feasible if it also satisfies the non-negativity
requirements (for the original variables, and the slack variables).
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Extreme Points

We already know that the feasible set for a LP (in inequality form) is a
convex set. We can add to this

Definition (Extreme points)

We say x ∈ S is an extreme point of convex
set S if

x = λy + (1− λ)z

for y , z ∈ S and 0 < λ < 1 implies
x = y = z .

Intuitively this means that extreme points are
not in the interior of any line segment inside
the set.

For a convex polytope (such as defined by A′x′ ≤ b, x ≥ 0
¯

) the extreme
points are the vertices.
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Geometry of linear programming solutions

Theorem

If an LP has a finite optimum, it has an optimum at an extreme point of
the feasible set.

For LP problems the feasible set will always have a finite number of
extreme points (vertices). This suggests a näıve algorithm:

1 Find all the vertices of the feasible set

2 Choose the optimum.
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How do we find vertices?

Theorem

The basic feasible solutions of Ax = b are the extreme points of the
feasible set A′x′ ≤ b, x ≥ 0

¯
.

Unfortunately, we can not typically identify which basic solutions will be
feasible a priori (i.e., which are vertices)

New näıve algorithm

1 Find all the basic solutions

2 Test to see if they are feasible

3 Choose the optimum of the basic feasible solutions

Somehow we also need to check for boundedness at the same time.
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Example

Example (cont.)

0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(2,2), f=10

(0,3), f=9

(0,0), f=0 (4,0), f=8

(2,2), f=10

maximize
  f = 2x + 3y

subject to 

  2x + 4y ≤ 12

   x +  y ≤ 4

        x ≥ 0

        y ≥ 0
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Section 2

Rank
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Linear equations and redundancy

Given Ax = b, where A is of size m × n

n variables (unknowns)

m equations (pieces of information)

Näıvely we have m pieces of information, and n variables, so we might
expect a unique solution for m ≥ n. However, some pieces of information
(equations) might be redundant.

examples
I if two rows are the same, then they don’t provide any extra information
I if one row is a scalar multiple of another, then it doesn’t provide any

extra information, e.g.,

x1 + x2 = 3
2x1 + 2x2 = 6

how do we assess redundancy in general?
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Rank

Definition (Rank)

The rank of a matrix A is the number of linearly-independent rowsa.

A matrix is full-rank if it has the maximum rank for its size (the minimum
of n and m for an m × n matrix).

aThere are actually several equivalent definitions of rank.

Note this is defined for any matrix: so we can use it for
I rank(A) – the rank of the constraint coefficient matrix
I rank(M) – the rank of the augmented matrix M = [A | b]

they won’t necessarily have the same rank, but

rank(A) ≤ rank(M)

because when we add a column the rank either increases by 1, or
stays the same.
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Rank example

Example

A =

 1 2 1
−2 −3 1

3 5 0


The rank(A) = 2

R3 = R1 − R2 so the 3 rows are linearly dependent

any pair of two rows is linearly independent

Now add columns M = [A | b]

M1 =

 1 2 1 2
−2 −3 1 4

3 5 0 −1

 and M2 =

 1 2 1 2
−2 −3 1 3

3 5 0 −1


Then rank(M1) = 3 and rank(M2) = 2
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Ranks and numbers of solutions

Theorem (Rouché-Capelli)

A system of linear equations Ax = b has a solution iff the ranks of its
coefficient matrix A and its augmented matrix M = [A|b] are equal.

If there are solutions, they form an affine subspacea of Rn of dimension
n − rank(A) where there are n variables.

aHere this is just a linear subspace translated away from the origin.

Examples:

rank(A) = rank([A|b]) = n, there will be a unique solution

rank(A) = rank([A|b]) < n, infinite solutions

rank(A) 6= rank([A|b]), no solutions
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Full-rank

If the matrix A is less than full rank, and the equations are consistent
(there is at least one solution) we can reduce the set of equations
down to a new set of full rank

I some LP pre-processors do just this

When we go from A′x′ ≤ b to Ax = b we add m slack variables, and
an identity matrix to A, i.e., A = [A′ | Im]. Even if all of the rows of
A′ were linearly dependent (i.e., rank(A′) = 1), adding the identity
would lead to rank(A) = m, i.e., A is full rank.

For what follows, we shall usually assume we start with a full rank
coefficient matrix A

I if not, algorithms often still work, but may be inefficient
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For us

Take Ax = b, where A is of size m × n

n variables

m equations

n ≤ m

with full-rank A

rank(A) = min(m, n) = n

rank([A|b]) = n or n + 1
I could be 1 or 0 solutions

0 or 1 solutions doesn’t leave much room for optimisation, so we will
usually consider the case n > m

I this always happens when we start with A′x ≤ b, because we add m
slack variables
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Solutions

Take Ax = b, where A is of size m × n

n variables

m equations

with full rank A, and n > m:

The dimension of the solution subspace is n −m
I the solution is a n −m dimensional hyperplane
I we can describe the hyperplane by where it intersects the axes (i.e.,

places where xi = 0 for some set of i)

Choose (n −m) variables to be 0
I then there will be a unique solution for the other m variables

F think of it as adding n −m additional equations
F or we reduce the number of variables down to m

I the possible number of choices is(
n

n −m

)
=

(
n

m

)
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Numbers of solutions

n' = 2
m = 1

n  = 3
m = 1

2d hyperplane

x1 + x2  ≤ 1 x1 + x2  + s3 = 1

convex
region

x1

x2

x1

x2

s3x1, x2  ≥ 0 x1, x2, s3 ≥ 0

3 vertices ⇔
(n
m

)
= 3 basic solutions
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Section 3

Näıve solution
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Exhaustive Search

The above suggests that we could perform optimisation via an
exhaustive search

I look for all the vertices
I pick the best

This would be very computationally challenging
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Näıve Optimisation

Explore all possible vertices
1 construct all vertices:

1 each construct requires at least one pivot: O(nm) operations
2 loose bound on basic solutions

(
n
m

)
F Stirling’ approximation makes it O(mn)

3 check basic solution is feasible
F requires comparison of m values

2 for each vertex you have to compute z which is O(n), but this is
small compared to performing the pivot.

So the total (worst-case) complexity is O
(
nmmn

)
This grows VERY VERY VERY quickly, e.g.,

n = 10, m = 10, this would be around 1012

n = 20, m = 20, this would be around 1028
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Hirsch conjecture

We think we can do MUCH better
Hirsch conjecture says that any two vertices of the polytope must be
connected to each other by a path of length at most m − n.

Maybe we could get the optimal value in m − n steps (pivots), if we
were really smart?

I actually the conjecture is wrong, but doesn’t rule out O(m)
performance

More on computational complexity later
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Takeaways

Mapping between inequalities and equalities

Solutions at vertices
1 but näıvely looking for them is VERY inefficient
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Further reading I
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