
Optimisation and Operations Research
Lecture 4: Algorithm Design in Matlab

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

http:

//www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/

School of Mathematical Sciences,
University of Adelaide

July 30, 2019

http://www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/
http://www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/


Section 1

Good Code

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 2 / 29



Fast Code

Design a good algorithm
I examples: multiplication by Schoolbook method v Karutsuba’s method
I first step is being able to calculate the complexity

Good code:
I implement the algorithm (not something a bit like it)
I good data structures

F efficient to access
F don’t add extra time looking things up

I careful implementation
F optimise for common case, e.g., in nested if statements, should only

nest the uncommon case
F avoid things that a language is bad at (in Matlab, for loops are bad, in

other languages recursion might be slow)

But fast isn’t everything, always

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 3 / 29



Good code

Isn’t just about speed

Often your code just has to be “fast enough”

But you want
I to make it easy to debug
I to be able to reuse all or parts of it
I others to be able to use it or modify it

To do that we have to learn a little about style
I this is not a programming course, so we can’t spend nearly enough

time on it, but a few hints follow

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 4 / 29



Readability

Always code as if the guy who ends up maintaining your code
will be a violent psychopath who knows where you live.

Rick Osborne

Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.

Martin Fowler

Any code of your own that you haven’t looked at for six or
more months might as well have been written by someone
else.

Eagleson’s law

Thus spake the master programmer: “A well-written program
is its own heaven; a poorly-written program is its own hell.”

The Tao Of Programming

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 5 / 29

http://www.canonical.org/~kragen/tao-of-programming.html


Readability

Readability makes code easier to debug and maintain

Good variable names [BF12, Kim10]

Good comments [BF12, Eva10, Hen10]
I clear and helpful
I concise (don’t comment x = x + 1)
I remember the compiler doesn’t check comments!

Layout matters [Fre10, Kim10]
I we’re good at pattern recognition, and layout helps
I modern editors usually make it easy
I e.g.,

F indentation
F whitespace (in formulae)
F bracket placement

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 6 / 29



DRY = Don’t Repeat Yourself

Don’t Repeat Yourself

reuse tested code

if a value is used more than once create a variable

if a routine is used more than once create a procedure or function

Having it in one place means it will be consistent, and easy to change

the “single source of truth” principle

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 7 / 29



Go To Statement Considered Harmful [Dij68]

http://xkcd.com/292/

Similar problems:

global variables

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 8 / 29

http://xkcd.com/292/


Global variables

We didn’t really go into details of goto’s (they aren’t a big deal in
Matlab), but a similar bad idea is global variables

These are variables that are visible anywhere in your program

They are convenient, because they make it easy to convey information
from one place to another

They are a bad idea for the same reasons as gotos
I increase inter-dependence
I create multiple (different) pathways to a single point in the code
I make it harder to read the code linearly

If you use global variables in code you hand up, you will loose marks, and
may be given zero!!!

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 9 / 29



Section 2

Matlab and good code

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 10 / 29



Floating point

Computers represent integers Z in binary (base-2)

We want to represent any real number R
I there is no finite way to do this perfectly
I the real numbers are uncountable

Common approach is to use floating point numbers
I We store in exponential form: a mantissa and exponent
I e.g.,

1.245 = 1245 × 10−3

so we store the two integers 1245 and −3 (and the sign)
I There are many standards for floating point

F most common is the IEEE 754 Standard
F Matlab uses double-precision floating point from this
F each variable takes 64 bits, or 8 bytes
F this standard includes NaN and Inf and -Inf

Quick reading:
http:

//www.ee.columbia.edu/~marios/matlab/Fall96Cleve.pdf

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 11 / 29

http://www.ee.columbia.edu/~marios/matlab/Fall96Cleve.pdf
http://www.ee.columbia.edu/~marios/matlab/Fall96Cleve.pdf


Floating point

Most important thing to remember is that these are approximations!
I there will be numerical errors in ALL of your calculations!
I you can never assume a number is exact

Must be careful
I don’t test for equality

Example

Replace
if x == y

with
if abs(x-y) < epsilon

I take care when dividing by something that is near zero
F errors may have a large impact on output

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 12 / 29



Floating point weirdness

Just a short list of weirdnesses caused by floating point

+0 and −0 are different numbers

0.1 cannot be exactly represented in a float.
If you don’t believe me, try fprintf(’%.40f\n’, 0.1)

A change in the order of operations (that should be equivalent) can
change the result.

All floats can be exactly represented by a finite decimal number, but
it might take more than 100 digits.

https://randomascii.wordpress.com/2012/04/05/

floating-point-complexities/ https://randomascii.wordpress.

com/2012/01/11/tricks-with-the-floating-point-format/

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 13 / 29

https://randomascii.wordpress.com/2012/04/05/floating-point-complexities/
https://randomascii.wordpress.com/2012/04/05/floating-point-complexities/
https://randomascii.wordpress.com/2012/01/11/tricks-with-the-floating-point-format/
https://randomascii.wordpress.com/2012/01/11/tricks-with-the-floating-point-format/


Floating point tricks and tips

Never ask “is x equal to y?”, always ask “is x close to y?”
I i.e., replace

if (x == y) with if (abs(x-y) < epsilon)

I what should ε be? That’s actually a tricky question
https://randomascii.wordpress.com/2012/02/25/

comparing-floating-point-numbers-2012-edition/
I most of the time, for us, it isn’t too hard – just pick a reasonable small

number, e.g., 10−10

I but note, lots of my code allows ε as a parameter

Always be aware of numerical errors, e.g., try in Matlab

sin(pi)

The result should be 0. It isn’t.

Floating point arithmetic used to be much slower than integer
arithmetic, but these days most CPUs have a dedicated FPU

I still, for really, really fast code

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 14 / 29

https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/


Vectorisation

Vectorisation is a common trick to speed up Matlab code

Matlab is slow at some things, and fast at others
I slow at “loops”
I fast at vector and matrix operations

This is good for us
I lots of what we do in optimisation is Linear Algebra
I it vectorises nicely

Its a Matlab trick, not a fundamental way of speed up code
I you are still performing the same number of operations

Readability
I sometimes good: e.g., for Linear algebra
I sometimes bad: e.g., sometimes you twist your code in knots to write

it this way

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 15 / 29



Modularisation [Gar10]

We break code into blocks or modules in order to

hide information: a user should be able to use the code block,
without knowing how it is implemented, and in fact that might
change in the future.

create clean interfaces: i.e., limit inter-dependencies or coupling
between components that make programs complex to understand and
debug.

create cohesion:, i.e., related processes are grouped, and separate
concerns, e.g., so that multiple people can each code up their part of
a project.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 16 / 29



Modularisation in Matlab
Functions

Matlab’s main mechanism for modularisation is the function

It’s similar to the idea of a function in Mathematics
I e.g., y = sin(x)

functioninput
arguments

output
arguments

x sin y

Except the inputs and outputs can be anything
I e.g., strings

And in a program a function can have “side effects”
I though we don’t like them

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 17 / 29



Modularisation in Matlab
Arguments

The term argument comes from the inputs to a function in
Mathematics

I but it is also used to describe the outputs in Matlab

Sometimes inputs are called parameters

Sometimes outputs are called return values

Sometimes a distinction is made between the value you prescribe
when you define the function (a parameter) and the value actually
passed to the function at run time (an argument), but this distinction
isn’t going to be used here.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 18 / 29



Modularisation in Matlab
Pass by “clever”

Arguments are variables that are “passed” to the function

pass by value: the variable is copied into a new variable inside the
function

pass by reference: a reference or pointer to the variable is copied, and
the function uses this to work with the original

They each have advantages and disadvantages
I Matlab tries to do the best of both
I it passes by reference, unless a copy is needed
I i.e., pass by “clever”

http://au.mathworks.com/matlabcentral/answers/

96960-does-matlab-pass-parameters-using-call-by-value-or-call-by-reference

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 19 / 29

http://au.mathworks.com/matlabcentral/answers/96960-does-matlab-pass-parameters-using-call-by-value-or-call-by-reference
http://au.mathworks.com/matlabcentral/answers/96960-does-matlab-pass-parameters-using-call-by-value-or-call-by-reference


Modularisation in Matlab
Scope

Variables defined inside the function are different from those outside

inside the function, you don’t have access to the whole world
I only input arguments (and globals)

but you can create your own variables
I if you create X inside the function, it is a different variable to the X

outside

the places you can see a particular variable are called its scope

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 20 / 29



Modularisation in Matlab
Putting it together

function [out1, out2,... ,outN] = ...

function name(inp1, inp2,... ,inpM)

% comments to be displayed by help

statements
out1 = expression1;
out2 = expression2;
...

outN = expression2;

The function would typically be called by typing

[o1, o2, ... , oN] = function name(i1, i2, ... ,iM);

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 21 / 29



Modularisation in Matlab
Nesting, recursion, ...

There are lots of precise rules for setting up functions (see Practical 2),
e.g.,

Functions can have other function defined inside them (i.e., nested)

A function can call itself (i.e., recursion)

A function can drop out before its finished by “throwing an error”

Comment lines at the start of a function definition are used in
Matlab’s help operation.

Have a go at all this in Practical 2.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 22 / 29



Section 3

Debugging

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 23 / 29



Debugging

It’s not at all important to get it right the first time. It’s
vitally important to get it right the last time.

Andrew Hunt and David Thomas

Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.

Brian Kernighan

Beware of bugs in the above code; I have only proved it
correct, not tried it.

Donald Knuth

There are two ways to write error-free programs; only the
third one works.

Epigrams in Programming, 40., Alan Perlis

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 24 / 29



Debugging

Debugging is the hardest part of coding

Error messages are often arcane and confusing
I but read them carefully – they contain a lot of information
I Google keywords from the message – see what other people did about it

Matlab’s IDE (Integrated Development Environment) has tools
I When you have an error, it will point you in the direction of the error

F its important to realise that the actual error may be elsewhere though

I You can trace through code step by step to see what is going on
http://au.mathworks.com/help/matlab/matlab_prog/

debugging-process-and-features.html

Create simple “test cases” to make sure your code is working, and
debug it when it isn’t

I this is actually a big and important topic in its own right

You often have to “Sherlock” around your code a bit to find an error

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 25 / 29

http://au.mathworks.com/help/matlab/matlab_prog/debugging-process-and-features.html
http://au.mathworks.com/help/matlab/matlab_prog/debugging-process-and-features.html


Debugging

See the handout for more details

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 26 / 29



Takeaways

Write good code

Matlab functions are a critical feature, you need to be able to use

Debugging, hard but inevitable

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 27 / 29



Further reading I

Dustin Boswell and Trevor Foucher, The art of readable code, O’Reilly, 2012.

Edsger W. Dijkstra, Go to statement considered harmful, Communications of the
ACM 11 (1968), no. 3, 147–148.

Cal Evans, 97 things every programmer should know, ch. A Comment on
Comments, pp. 32–33, O’Reilly, 2010.

Steve Freeman, 97 things every programmer should know, ch. Code Layout
Matters, pp. 26–27, O’Reilly, 2010.

Edward Garson, 97 things every programmer should know, ch. Apply Functional
Programming Principles, pp. 4–5, O’Reilly, 2010.

Kevlin Henney, 97 things every programmer should know, ch. Comment Only What
the Code Cannot Say, pp. 34–35, O’Reilly, 2010.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 28 / 29



Further reading II

Yechiel Kimchi, 97 things every programmer should know, ch. Coding with Reason,
pp. 30–31, O’Reilly, 2010.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 29 / 29


	Good Code
	Matlab and good code
	Debugging

