# Optimisation and Operations Research 

Lecture 5: The Simplex Algorithm

Matthew Roughan<br>[matthew.roughan@adelaide.edu.au](mailto:matthew.roughan@adelaide.edu.au)<br>http:

//www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/

School of Mathematical Sciences,
University of Adelaide
August 13, 2019

## Section 1

## Simplex overview

## A little history



Leonid Vitaliyevich Kantorovich;
(19 January 1912-7 April 1986) was a Soviet mathematician and economist, known for his theory and development of techniques for the optimal allocation of resources. He was the winner of the Nobel Prize in Economics in 1975 and the only winner of this prize from the USSR.

George Bernard Dantzig:
(November 8, 1914 - May 13, 2005) was an American mathematical scientist who made important contributions to operations research, computer science, economics, and statistics. He is particularly well known for his development of the simplex algorithm and his work with linear programming, some years after it was pioneered by the Soviet
 mathematician and economist Leonid Kantorovich.

## Problem Recap

We will start with a problem in standard equality form, find $\mathbf{x}$ that solves

$$
\begin{aligned}
\max \quad z & =\mathbf{c}^{T} \mathbf{x}+z_{0} \\
\text { such that } A \mathbf{x} & =\mathbf{b} \\
\text { and } \mathbf{x} & \geq 0
\end{aligned}
$$

or in abbreviated form

$$
\underset{\mathbf{x}}{\operatorname{argmax}}\left\{z=\mathbf{c}^{T} \mathbf{x}+z_{0} \mid A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq 0\right\}
$$

## Intuition

- Remember that often this has been converted from inequality form: so the vector $\mathbf{x}$ could include slack variables from inequalities.
- Intuitively, we want to search the vertices (efficiently) of the original feasible region for the optimal vertex.
- Vertices (of the original inequality problem) are feasible basic solutions to the equality
- We will organise our search so as to force the constraints towards being true, and then staying true
- Search always improves the objective


Our First Problem

$$
\begin{array}{rrlll}
\max \quad z=13 x_{1} & +12 x_{2} & +17 x_{3} & \\
\text { subject to } & 2 x_{1} & +x_{2}+2 x_{3} & \leq 225 \\
& x_{1} & +x_{2}+x_{3} & \leq 117 \\
& 3 x_{1} & +3 x_{2}+4 x_{3} & \leq 420 \\
& & & x_{i} & \geq 0, \quad \text { for } i=1,2,3
\end{array}
$$

## Simplex Overview

(1) Form the Simplex Tableau

- it's convenient to put all the information in one large matrix
(2) Phase I
- look for a starting point
- either we get
* a feasible starting point
$\star$ we show the problem is infeasible
(3) Phase II
- find the optimal point
- or show that the problem is unbounded


## Teaching Order

We teach this in the order
(1) Tableau
(2) Phase II
(3) Phase I
because

- sometimes Simplex Phase I isn't needed
- phase I can be written in terms of Phase II


## Section 2

## The Simplex Tableau

## The Simplex Tableau

The Simplex Tableau $M$ for

$$
\underset{\mathbf{x}}{\operatorname{argmax}}\left\{z=\mathbf{c}^{T} \mathbf{x}+z_{0} \mid A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq 0\right\}
$$

is constructed by


- Assuming there are $m$ constraints, and $n$ variables, the Tableau $M$ has size $(m+1) \times(n+2)$.
- Note the $z$ column never changes, so we don't need to actually have this, but its useful to understand the algorithm.


## The Simplex Tableau Example

## Example

The LP from our first problem in standard equality form

$$
\max z=13 x_{1}+12 x_{2}+17 x_{3}+0
$$

subject to

$$
\begin{aligned}
& 2 x_{1}+x_{2}+2 x_{3}+1 x_{4}=225 \\
& x_{1}+x_{2}+x_{3}+1 x_{5}=117 \\
& 3 x_{1}+3 x_{2}+4 x_{3} \\
& +1 x_{6}=420 \\
& x_{i} \geq 0 \quad \forall i
\end{aligned}
$$

can be written in Tableau form (with $z_{0}=0$ ) as

| $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $z$ | $b$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 1 | 2 | 1 | 0 | 0 | 0 | 225 |
| 1 | 1 | 1 | 0 | 1 | 0 | 0 | 117 |
| 3 | 3 | 4 | 0 | 0 | 1 | 0 | 420 |
| -13 | -12 | -17 | 0 | 0 | 0 | 1 | 0 |

## Why use the Simplex Tableau?

The Simplex Tableau isn't really a necessary part of the algorithm

- e.g., sometimes people put the various bits in different parts of the Tableaux - it doesn't matter
So why do it?
- The Simplex Tableau puts all the data in one place
- useful back in the days of crappy memory management
- Does it in a way that means we can use a single operation
- pivot does the bulk of the work
- makes the code simpler
- It's useful for teaching
- we can understand what the algorithm is doing in a very simple way


## The Simplex Tableau and solutions

Imagine the Simplex Tableau

can be (re)written in the form

$$
M^{\prime}=\begin{array}{|l|l|l|}
\hline Q & I & \mathbf{b}^{\prime} \\
\hline
\end{array}
$$

Then we can read off the solution immediately:

- set the free variables $x_{i}=0$ for $i=1, \ldots, n$
- then just read off the basic variables $x_{n+i}=b_{i}^{\prime}$ for $i=1, \ldots, m$

We want to generalise and exploit this idea

## The Simplex Tableau and Solutions

## Example

| $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $z$ | $b$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 1 | 2 | 1 | 0 | 0 | 0 | 225 |
| 1 | 1 | 1 | 0 | 1 | 0 | 0 | 117 |
| 3 | 3 | 4 | 0 | 0 | 1 | 0 | 420 |
| -13 | -12 | -17 | 0 | 0 | 0 | 1 | 0 |

Solution:

$$
\mathbf{x}=(0,0,0,225,117,420) \text { and } z=0
$$

We want to generalise and exploit this idea:

- we are looking for unit columns, i.e., columns with $m$ entries zero and the remaining element is 1 .
- we need a complete set of these unit columns


## Basic columns

- If $x_{j}$ is a basic variable, then the $j$ th column $M(:, j)$ will be a unit column, which we call a basic column
- A solution should have $m$ basic variables, so we need $m$ basic columns, plus 1 (the $z$ column).
- The basic columns need to have their '1's in different rows, or we don't really have independent basic variables.

Let's construct a vector of the indexes of the basic variables:

$$
\ell_{B}=\left[\ell_{1}, \ell_{2}, \ldots, \ell_{m}\right]
$$

then we want to get $M$ in the form such that when we take the columns corresponding to these variables, we get an identity matrix:

$$
\left[M_{\ell_{1}} M_{\ell_{2}} \ldots M_{\ell_{m}} M_{z}\right]=I_{m+1}
$$

where $I_{m+1}$ is the $(m+1) \times(m+1)$ identity matrix.

## Canonical form

## Definition (Canonical form)

The tableau $M$ is said to be in canonical form if there is a complete set of $(m+1)$ unit columns:

$$
\left[M_{\ell_{1}} M_{\ell_{2}} \ldots M_{\ell_{m}} M_{z}\right]=I_{m+1}
$$

and $\ell_{B}=\left[\ell_{1}, \ell_{2}, \ldots, \ell_{m}\right]$ is the canonical form of the list of basic variables.

## Example

Note that the basic variables don't have to be in order

$M=$| $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $z$ | $b$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 6 | 1 | 0 | 2 |
| 2 | -3 | 1 | 1 | 0 | 0 | 5 |
| 0 | -1 | 0 | 0 | 0 | 1 | 4 |

is in canonical form, with $\ell_{B}=[5,3]$

## Canonical form

## Example

$M=$| $x_{1}$ | $x_{2}$ | $x_{3}$ | $z$ | $b$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 0 | 0 | 2 |
| 0 | 3 | 0 | 0 | 3 |
| 0 | 0 | 1 | 0 | 4 |
| 0 | 4 | 0 | 1 | 4 |

is not in canonical form, because there is no unit column with 1 in the second row.

## Feasible Canonical form

## Definition (Feasible Canonical form)

A tableau $M$ in canonical form is said to be in feasible canonical form iff its solution is feasible.

- We can detect a feasible canonical form by noting that the solution where we read of the $x_{i}$ values as above will have $x_{i}$ values that are either 0 or $b_{j}$. These automatically satisfy $A \mathbf{x}=\mathbf{b}$, but must also satisfy $x \geq \underline{0}$, so
a canonical form is feasible iff the $\mathbf{b}$ column is non-negative! ${ }^{1}$
- A feasible canonical form corresponds to a vertex of the original inequality feasible region.
${ }^{1}$ Ignoring the $z_{0}$ element


## Getting to feasible canonical form

- Simplex Phase II starts with a matrix in feasible canonical form
- how do we get there?
- If we start with the problem $\max _{\mathbf{x}}\left\{z=\mathbf{c}^{T} \mathbf{x}+z_{0} \mid A^{\prime} \mathbf{x}^{\prime} \leq \mathbf{b}, \mathbf{x}^{\prime} \geq 0\right\}$, with $\mathbf{b} \geq 0$, then conversion to standard equality form will introduce slack variables that create the required identity matrix.


## Example

| $x_{1}$ | $x_{2}$ | $x_{3}$ | $s_{4}$ | $s_{5}$ | $s_{6}$ | $z$ | $b$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 1 | 2 | 1 | 0 | 0 | 0 | 225 |
| 1 | 1 | 1 | 0 | 1 | 0 | 0 | 117 |
| 3 | 3 | 4 | 0 | 0 | 1 | 0 | 420 |
| -13 | -12 | -17 | 0 | 0 | 0 | 1 | 0 |

- this canonical form corresponds to a starting point $\mathbf{x}^{\prime}=\underline{0}$ (with positive slack variables), i.e., the origin
- Otherwise we use Simplex Phase I to get into feasible canonical form before we perform Phase II.


## Takeaways

- The Tableau $M$ encapsulates all of the information we need to keep track of
- we need to know how to construct it
- The form we aim for or want to keep is feasible canonical form
- complete set of unit columns
- b column is non-negative
- In this form we can read off a basic feasible solution


## Further reading I

