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Section 1

Simplex Phase I
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Problem Recap

We will start with a problem in standard equality form.

argmax
x

{
z = cTx + z0

∣∣Ax = b, x ≥ 0
}

or in longer form, find x that solves

max z = cTx + z0
such that Ax = b

and x ≥ 0

However, the problem might not start in feasible canonical form:

could be infeasible, e.g., bi < 0

could be “uncanonical,” e.g., lacks one or more unit columns
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The Simplex Tableau for Phase I Example

Example (uncanonical and infeasible standard equality form)

max z = 2x2 + x3 + 6x4 + 2
such that x1 − x2 − 2x4 = 0

x1 + x2 + 2x3 = 4
x2 − x4 − x5 = −2

xi ≥ 0, ∀i
becomes the Tableau

x1 x2 x3 x4 x5 z b
1 −1 0 −2 0 0 0
1 1 2 0 0 0 4
0 1 0 −1 −1 0 −2
0 −2 −1 −6 0 1 2 z row

There are no basic columns, and one of the bi < 0
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Intuition for Phase I

Construct an artificial problem, which we specifically create so that
I it has a guaranteed feasible starting point
I maximising its objective creates a feasible solution to the original

problem

Use Simplex Phase II on the artificial problem
Each step (roughly)

I adds a basic variable to the original problem
I moves towards a feasible solution

When we stop, we know we will either
I have a feasible canonical tableau
I have proved that the original problem was infeasible
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Relaxation

Relaxation means giving up on one or more constraints

Here we want to solve for Ax = b, but we could relax this to the
constraint Ax ≤ b.

The idea is that
I we know how to put this in a suitable form to solve: just add artificial

slack variables ai to get
Ax + a = b

I artificial slack variables measure how far away we are from feasibility
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Creating an Artificial Problem via Relaxation

1 Multiply any row with a bi < 0 by -1

2 Relax Ax = b → Ax ≤ b.

3 Add in artificial slack variables ai to get

Ax + a = b

The relaxed problem is guaranteed to be in feasible canonical form

it is feasible, because we ensured that all bi ≥ 0 before we started

it is canonical because we can write it as

By = b

where B = [A | Im] and yT = (xT , aT ).

We still need an artificial objective function.
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How do we measure infeasibility?

We don’t (for the moment) care about the original objective, we instead
create an artificial objective to pull us back to the original equations

the artificial variables ai measure how far we are from feasible

maximise new objective

u = −
m∑
i=1

ai =
m∑
i=1

[Ax− b]i

we created the ai such that ai ≥ 0, so u ≤ 0

when u = 0 we have Ax = b, i.e., feasibility

So we want to maximise u, with the aim of getting 0
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How do we build this objective into the problem?

u =
m∑
i=1

 n∑
j=1

aijxj − bi


=

m∑
i=1

n∑
j=1

aijxj −
m∑
i=1

bi

=
n∑

j=1

xj

m∑
i=1

aij −
m∑
i=1

bi

=
n∑

j=1

xjdj + u0

where we define

dj =
m∑
i=1

aij and u0 = −
m∑
i=1

bi
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Artificial problem

So

We multiply any constraint row with bi < 0 by -1

We introduce artificial variables ai so that the system is in feasible
canonical form

We maximise u =
∑n

i=1 xjdj + u0

We also note that
z = cTx + z0

which we can rewrite as a constraint

−cTx + z = z0

where z looks like another variable
I we don’t know the optimal value of z yet, its just another variable for

the purpose of this optimisation.
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Now we have a new LP

max u = dTx + u0
such that By = b

−cTx + z = z0
and y ≥ 0

This is a standard equality form LP with n + 1 variables and m + 1
constraints

I it starts in feasible canonical form
I so we can solve it using the Simplex Phase II algorithm

But there are some differences
1 we don’t pivot in the z row (see below)
2 the final tableau might have some elements with bi = 0, on which we

perform a special step
3 unboundedness of this problem = infeasibility of the original problem

Once we finish, remove the u row, and continue with Phase II
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The Simplex Tableau for Phase I
The Simplex Phase I Tableau M for

argmax
x

{
u = dTx + u0

∣∣Ax = b,−cTx + z = z0, x ≥ 0
}

is

M =

a i
’s

z
co

l.

u
co

l.

b
co

l.

A I 0 0 b

−cT 0 1 0 z0 z row

−dT 0 0 1 u0 u row

Pre-multiply any row with a negative bi by -1 before construction
dj =

∑m
i=1 aij

Start with artificial variables as basic
We don’t really need to keep track of the artificial variables because
they will be zero in the end anyway
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The Simplex Tableau for Phase I Example

Example

max z = 2x2 + x3 + 6x4 + 2
such that x1 − x2 − 2x4 = 0

x1 + x2 + 2x3 = 4
x2 − x4 − x5 = −2

xi ≥ 0, ∀i
becomes the Tableau

x1 x2 x3 x4 x5 a1 a2 a3 z u b
1 −1 0 −2 0 1 0 0 0 0 0
1 1 2 0 0 0 1 0 0 0 4
0 −1 0 1 1 0 0 1 0 0 2 ×− 1
0 −2 −1 −6 0 0 0 0 1 0 2 z row
−2 1 −2 1 −1 0 0 0 0 1 −6 u row

In calculations, we can drop the artificial ai and u columns (as we could
with the z column earlier).
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The Simplex Phase I Pivot Selection

Simplex Phase I then proceeds using the Phase II algorithm
I series of pivots

However, pivot selection is slightly different
I don’t pivot in the z-row
I we might use different discretionary rules
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The Simplex Phase I Termination

Simplex Phase I then proceeds using the Phase II algorithm
I series of pivots
I terminates when we can’t find a new pivot

The artificial problem
I is guaranteed to be feasible (we set it up that way)
I is guaranteed to be bounded because we know u ≤ 0

Hence we will find an optimal solution u∗ to the artificial problem

There are two cases
I u∗ < 0⇒ the original problem is infeasible
I u∗ = 0⇒ the original problem is feasible, and the solution to the

artificial problem (minus the artificial variables) is a feasible starting
point for the original problem

Its possible we won’t have all the required unit columns
I we can multiply rows with bi = 0 by -1 to get them
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Simplex Phase I pseudo-code
Problem in standard equality form: maxx

{
z = cTx + z0

∣∣Ax = b, x ≥ 0
}

Input: A, b, c, z0 // implicitly n variables, m constraints
Output: x∗, z∗

1 Construct Simplex Phase I Tableau M
2 while at least one −di < 0 do
3 Select Entering Variable xj (column j)
4 Select Leaving Variable xk (row i)
5 `B(i)← j
6 M ← Pivot(M, i , j)

7 end
8 u∗ ← M(u-row, b-col)
9 if u∗ < 0 then

10 problem is infeasible
11 else
12 remove any all-zero rows
13 for row i without a basic column do
14 M ← Pivot(M, i , j), s.t. aij 6= 0 // bi = 0 for such rows
15 end
16 remove u-row and col, and artificial variables
17 continue to Simplex Phase II

18 end

Algorithm 1: Simplex Phase I
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Simplex Method Phase I Example: iteration 1

Example

x1 x2 x3 x4 x5 z u b
1 −1 0 −2 0 0 0 0
1 1 2 0 0 0 0 4
0 −1 0 1 1 0 0 2
0 −2 −1 −6 0 1 0 2 z row
−2 1 −2 1 −1 0 1 −6 u row

⇓
1 −1 0 −2 0 0 0 0
0 2 2 2 0 0 0 4
0 −1 0 1 1 0 0 2
0 −2 −1 −6 0 1 0 2 z row
0 −1 −2 −3 −1 0 1 −6 u row
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Simplex Method Phase I Example: iteration 2

Example

x1 x2 x3 x4 x5 z u b
1 −1 0 −2 0 0 0 0
0 2 2 2 0 0 0 4
0 −1 0 1 1 0 0 2
0 −2 −1 −6 0 1 0 2 z row
0 −1 −2 −3 −1 0 1 −6 u row

⇓
1 0 1 −1 0 0 0 2
0 1 1 1 0 0 0 2
0 0 1 2 1 0 0 4
0 0 1 −4 0 1 0 6 z row
0 0 −1 −2 −1 0 1 −4 u row
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Simplex Method Phase I Example: iteration 3

Example

1 0 1 −1 0 0 0 2
0 1 1 1 0 0 0 2
0 0 1 2 1 0 0 4
0 0 1 −4 0 1 0 6 z row
0 0 −1 −2 −1 0 1 −4 u row

⇓
1 0 3/2 0 1/2 0 0 4
0 1 1/2 0 −1/2 0 0 0
0 0 1/2 1 1/2 0 0 2
0 0 3 0 2 1 0 14 z row
0 0 0 0 0 0 1 0 u row
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Simplex Method Phase I Example: stop

Example

x1 x2 x3 x4 x5 z u b
1 0 3/2 0 1/2 0 0 4
0 1 1/2 0 −1/2 0 0 0
0 0 1/2 1 1/2 0 0 2
0 0 3 0 2 1 0 14 z row
0 0 0 0 0 0 1 0 u row

There are no more places with −dj < 0, so Simplex Phase I stops

The Tableau is in feasible canonical form

`B = (1, 2, 4)

Also u∗ = 0, so we have found a feasible starting point for Phase II

Drop the u-row and proceed to Phase II (but that will finish straight
away because the resulting Tableau is already finished)

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 20 / 30



Phase I Properties

How does Phase I guarantee to get us to a feasible canonical form?

We never pivot on the columns corresponding to the ai
I in fact, we can leave these columns out of calculations
I so these are never entering variables

Take R to the be the set of rows without a corresponding basic
variable (outside the artificial variables)

I if we ever pivot in row i , this row is removed from R and never returns

We know we can always select a new row (as long as we have a
column), because the problem is bounded

When we finish, if u0 = 0, then either
I we did a pivot in every row, and R = φ
I or we need to think a little more ...
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Simplex Method Phase I Properties

Row k of M is denoted rk , but write u for the special u-row.

Theorem

For each tableau in Phase I

u = −
∑
i∈R

ri , i.e., dj =
∑
k∈R

akj , and u0 = −
∑
k∈R

bk

Proof : (by induction):

The equation is true for the initial tableau by construction.

Let’s suppose that the result is true for some tableau M

Perform a pivot at (i , j) (satisfying Simplex pivot rules) to go from

M → M ′

then proof by induction requires us to show the result is true for M ′.
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Simplex Method Phase I Properties

Perform a pivot at (i , j) to go from M → M ′

u′ = u +
dj
aij

ri

= −
∑
k∈R

rk +

∑
k∈R akj
aij

ri

= −
∑

k∈R,k 6=i

(
rk −

akj
aij

ri

)
−
(
ri −

aij
aij

ri

)

= −
∑

k∈R,k 6=i

(
rk −

akj
aij

ri

)

= −
∑
k∈R′

(
rk −

akj
aij

ri

)
Q.E.D.
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Simplex Method, Phase I Properties

Now consider the case u0 = 0 but R is non-empty

we have reached the end

but haven’t got a complete set of basic columns

Then

the solution must be feasible bi ≥ 0

from previous theorem
∑

i∈R bi = −u0 = 0

so bi = 0 for all i ∈ R

if all elements in the row are equal to 0 then this row is a linear
combination of the other rows and is therefore redundant and can be
removed.

otherwise we can pivot on any element aij 6= 0 in such a row without
changing the last column of the tableau

I we do these pivots to create our necessary basic variables
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Section 2

Putting it together
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Simplex Method Altogether

The Simplex Algorithm (Phase I and II) always stops in one of the
following ways:

stop 1: (at end of in Phase 1) there are no feasible solutions.
I because u∗ < 0

stop 2: (during Phase 2) there are feasible solutions with arbitrarily
large z–values, and therefore no optimal solutions;

I because we couldn’t find a valid pivot row

stop 3: (at the end of Phase 2) feasible optimal solution has been
found;

I because we couldn’t find a valid pivot column
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Mix and Match
Sometimes we start with a problem that has inequalities, and equalities.
We could just convert to standard form, and continue, but the initial
inequalities already introduce slack variables (and hence basic columns), so
we don’t really need artificial variables for these, so for

argmax
x

{
z = cTx + z0

∣∣Bx ≤ b,Dx = d, x ≥ 0
}

the Simplex Phase I Tableau would be

M =

s i
’s

a i
’s

z
co

l.

u
co

l.

b
co

l.

B I 0 0 0 b

D 0 I 0 0 d

−cT 0 0 1 0 z0 z row

−dT 0 0 0 1 u0 u row
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Mix and Match Example

Example

max z = x2 − 3x4 + 2
x1 + x3 − x4 = 2

x2 + x3 + x4 = 2
x2 − x4 ≤ 2

xi ≥ 0

The Phase I Tableau is

x1 x2 x3 x4 x5 z u b
1 0 1 −1 0 0 0 2

0 1 1 1 0 0 0 2

0 1 0 −1 1 0 0 2

0 1 0 −3 0 1 0 2

−1 −2 −2 1 1 0 1 −6

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII July 30, 2019 28 / 30



Takeaway

Why do we teach Simplex?

because it shows one of the greatest ideas in algorithm development
I construct a new problem that is simpler to solve, but helps you with

your original problem

this idea is reused in solution of many mathematical problems
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Further reading I
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