
Optimisation and Operations Research
Lecture 8: Algorithm analysis and Big-O notation

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

http:

//www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/

School of Mathematical Sciences,
University of Adelaide

August 1, 2019

http://www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/
http://www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/

Section 1

Algorithm analysis

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 2 / 37

Algorithm Analysis

We would like to estimate how long our program will take to run

More generally, how many resources will it take?
I time
I memory (space)
I unicorns

And often, we would like to make it better

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 3 / 37

Empirical Measures

Run the program and test it
I see how long it takes

F in Matlab use tic and toc
F there are lots of tools, e.g., see profilers

I see how much memory it uses

This is simple, but
I how do we anticipate performance for a new problem?
I how do we determine the practical limits of our program?
I how will our program run on a different computer?

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 4 / 37

Memory Analysis

What takes up memory?
I the program itself

F this is usually fairly constrained, so we mostly ignore it

I the variables
F in Matlab, most variables are double precision floating point
F effectively they take 8 bytes each

Memory analysis is just a matter of counting the number of variables
I a vector of length n, takes 8n bytes
I an n ×m matrix takes 8nm bytes

In general, there are many other issues to consider, but simple
counting is the starting point

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 5 / 37

Time Analysis

Time analysis is more complicated

What takes time?
I each operation takes time, but they aren’t all the same

F + might be faster than ×
F ×2 is often very fast in binary

I the time an operation takes depends on the particular computer
F so often we don’t work out actual time, we look directly at the number

of operations

So once again it is just counting, but
I there are different types of operations to count
I there are some extra complexities we will consider below

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 6 / 37

Time Analysis: simple examples

operations

calculation + × notes

(x1 + x2)× x3 1 1

(x1 × x3) + (x2 × x3) 1 2 same output as previous calc

x6 5 assumes näıve multiplication

A + B nm for n ×m matrices

It’s just counting, but details matter!

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 7 / 37

Time Analysis: operations

There are lots of operations you could count

arithmetic: e.g., ×, +, −, /, ...

relational: e.g., comparisons x > 0, y == 2

logic: if true ...

bitwise: we don’t use these much in Matlab

set: e.g., union, intersection, ...

memory access: e.g., creating a variable (memory allocation), setting
a variable, reading from an array, ...

functions you call contain multiple operations: e.g., sin(x)

in Matlab vector operations are actually made up of lots of smaller
operations, e.g., A + B would need to add all of the elements

Input/Output (to screen or disk) – be aware this is SLOW

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 8 / 37

Time Analysis: operations

There are lots of operations you need to consider

We aim to break it down to primitive operations
1 e.g., arithmetic, relational, and logic
2 Separate I/O from the algorithm

F make sure Matlab lines end with a ’;’

Take uniform-cost model
1 assume all primitive operations take the same time

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 9 / 37

Time Analysis: loops

for i=1:n

% do some stuff that takes k operations

...

end

The cost of a loop is the internal cost (assume k) multiplied by the
number of times the loop runs (here n)

So the cost here is nk operations

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 10 / 37

Time Analysis: loops example

for i=1:m

for j=1:n

x = x + (i*j)

end

end

The inner loop does 2 primitive ops
I Note that in this example, it doesn’t depend on the values of x , i or j

The inner “j” loop performs this n times, so 2n ops

The outer “i” loop repeates this m times, so the final count is

2nm

operations.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 11 / 37

Strategy

Break the program into blocks
I we can just add up the cost of each block

Look for loops
I the cost of the “stuff” inside the block is multiplied by the number of

times the loop runs

Functions like sin(x) can often be given a constant cost
I its hard to know exactly what it is
I we’ll fix that: see Big-O notation below

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 12 / 37

Example: pivot

1 function [Mout] = pivot(M, i, j, epsilon);

2 %

3 % pivot.m, (c) Matthew Roughan, 2015

4 %

5 % created: Wed Jul 1 2015

6 % author: Matthew Roughan

7 % email: matthew.roughan@adelaide.edu.au

8 %

9 % Perform a pivot at position (i,j) of matrix M

10 %

11 % INPUTS:

12 % M = Tableau on which we operate

13 % (i,j) = pivot location

14 % optional inputs

15 % epsilon = small number so that we don’t test "exactly" zero, but near it

16 %

17 % OUTPUTS:

18 % M_out

19 %

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 13 / 37

Example: pivot

20 if nargin < 4

21 epsilon = 1.0e-12;

22 end

23

24 % check inputs

25 assert(i>=1 && i<=size(M,1) && i == round(i), ’invalid value of i’);
26 assert(j>=1 && j<=size(M,2) && j == round(j), ’invalid value of j’);
27 assert(abs(M(i,j)) > epsilon, ’M(i,j) close to zero’);
28

29 if abs(M(i,j)) < epsilon

30 error(’M(i,j) close to zero ’);
31 end

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 14 / 37

Example: pivot

32

33 % create the output array

34 Mout = zeros(size(M));

35

36 % divide row i by M(i,j)

37 Mout(i,:) = M(i,:) / M(i,j);

38

39 % subtract enough of the new row from each other row to make other column values zero

40 for k=1:size(M,1)

41 if k ~= i

42 Mout(k,:) = M(k,:) - Mout(i,:)*M(k,j);

43 end

44 end

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 15 / 37

Time Analysis: indeterminacy

The big problem for analysing cost is indeterminacy, i.e., sometimes the
code’s behaviour changes depending on the values

if (x > 0)

y = x + 1

else

y = x + z + w

end

Often we don’t know what value of x to expect (that’s might be the whole
point of the program) so how should we analyse this?

We’ll look at this a little later.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 16 / 37

Time Analysis: extra complexities

1 Modern computers really mess all this up
1 CPU can perform multiple operations per clock cycle, under certain

(complex) conditions
2 Multiple levels of cache change speed to access (and hence operate) on

variables
3 ...

2 So what do we do?
1 Big-O notation (see next section) abstracts away some details
2 Complexity analysis looks at the class of the algorithm rather than the

details, but we will look at this later

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 17 / 37

Section 2

Big-O Notation (and its friends)

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 18 / 37

Computational complexity

Often, we don’t care about the time for a particular problem, we care
about the practical bounds for problems we might consider in the
future

We would like to estimate how long our program will take to run
I as a function of the size of the problem

F e.g., n equals the number of variables
F e.g., m equals the number of constraints

I could also include the size of the variables in memory
F e.g., k bit floating point numbers

often interested in BIG problems, so look at asymptotic behaviour
I e.g., large m and n
I use big-O notation

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 19 / 37

Big-O notation

Definition

f (x) = O
(
g(x)

)
means (i.e., iff) there exists constant c and x0 such that

|f (x)| ≤ c |g(x)|

for all x such that xi ≥ x0.

Usage:

describes asymptotic limiting behaviour: implicit that x →∞
the function g(x) is chosen to be as simple as possible

a common mistake is to think that it means f (x)/g(x)→ k

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 20 / 37

Big-O notation properties

Multiplication: f1 = O(g1) and f2 = O(g2) then

f1 × f2 = O(g1 × g2)

Multiplication by a constant: f = O(g)

kf = O(g)

Summation: f1 = O(g1) and f2 = O(g2) then we can write a general
expression, but usually either g1 = g2, or WLOG g1 grows faster than
g2 and in these cases

f1 + f2 = O(g1)

These properties mean that we can simplify using a simple set of rules

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 21 / 37

Big-O notation rules

When we use Big-O notation, we use the following rules:

1 if f (x) is a sum drop everything except the term with the largest
growth rate

2 if f (x) is a product any constants are ignored

Assume these rules have been applied, when you see Big-O.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 22 / 37

Example of RULE-1

Example

f (x) = x7 − 200x4 + 10 is dominated (for large x) by the x7 term, so

f (x) = O
(
x7
)

We dropped the terms −200x4 + 10 because they grow slower than x7.

Example

We can reduce O(n2 + log n) to O(n2).

The log() function grows more slowly than n (or any polynomial).

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 23 / 37

Example of RULE-2

Example

f (n) = 3n2, which is a product, so we ignore constants, and

f (n) = O
(
n2
)

We ignored the constant 3.

Example

If k is a constant, we can rewrite O(kn log n) as O(n log n).

Whether k is a constant depends on the context.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 24 / 37

Stirling’s approximation

Stirling’s approximation is both an example of use of the notation, and
also a useful tool in some analysis:

ln n! = n ln n − n + O(ln n)

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 25 / 37

We use Big-O notation here

We will use Big-O notation to count operations in an algorithm

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 26 / 37

Classic examples

problem complexity notes∑n
i=1 xi O(n)

A× B O(n3) näıve algorithm

O(n2.373) clever algorithm

A−1 O(n3) näıve algorithm

O(n2.373) clever algorithm

det(A) O(n!) näıve algorithm

O(n3) clever algorithm

Where A and B are n × n matrices

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 27 / 37

Example of a more complicated function

Example

Calculate the complexity of computing f (x) = exp(x).

This depends on how you compute exp(x).

A simple approach is Taylor series
I assume you want n digits of precision
I that determines how many terms you need in the Taylor series
I so computation is O(nM(n)), where M(n) is the cost of a

multiplication with n digits

Assuming fixed precision (e.g., in Matlab, double precision)

exp(x) = O(1)

That is, its computational time doesn’t depend on how big x is

There are faster approaches, but this suffices for today

Other elementary functions, e.g., sin, cos, arctan, log, are similar

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 28 / 37

Nomenclature

In order, we describe classes of algorithms as ???-time (e.g., constant-time)

complexity name example algorithms

O(1) constant calculate simple functions

O(log n) logarithmic binary search

O(n) linear adding arrays of length n

O(n log n) log linear Fast Fourier Transform (FFT)

O(n2) quadratic adding up all elements of a matrix

O(nd) polynomial näıve matrix multiplication

O(cn) exponential Simplex

O(n!) factorial brute force search for TSP

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 29 / 37

Weirdness

Example

x = O(x2) but x2 6= O(x)

so using = is slightly weird, as there is an asymmetry.
Sometimes we use ∈ instead.
e.g.,

x ∈ O(x2)

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 30 / 37

Often the symbols are used more generally

Sometimes we use these symbols in a type of algebra

Example (
n + O(n1/2)

)(
n + O(log n)

)2
= n3 + O(n5/2)

Meaning: for any functions which satisfy each O(...) on the LHS, there are
some functions satisfying each O(...) on the RHS, such that substituting
all these functions into the equation makes the two sides equal.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 31 / 37

Variables

It can get confusing, as variables and constants sometimes are inferred
from context.

For instance

f (n) = O(nm)

g(m) = O(nm)

mean quite different things, even though the RHSs are the same.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 32 / 37

Big-O limitations

Big-O has advantages:

it gets to the nub of the question – what is the shape of the
performance of our algorithm for large problems

However it has limitations

it doesn’t tell us about constants, and lower-order terms
I these are important, particular for small to moderate sized problems
I Big-O is only for asymptotic performance

it doesn’t tell us actual computation times

it’s only an upper bound

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 33 / 37

Big-Ω

Two forms of Big-Omega notation

Hardy-Littlewood (used in math)

Knuth (used in computational complexity)

Definition (Big Omega)

f (x) = Ω
(
g(x)

)
⇔ g(x) = O

(
f (x)

)
More succinctly: f (x) ≥ kg(x) for some k

Similar to Big-O, but gives a lower bound

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 34 / 37

Big Theta

Definition (Big Theta)

f (x) = Θ
(
g(x)

)
means that f (·) is bounded above and below by g(·), i.e.,

k1g(x) ≤ f (x) ≤ k2g(x)

for positive constants k1 and k2, for all x > x0.

So Big-Θ notation means the function f (x) grows as fast as g(x).

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 35 / 37

Takeaways

How to count (operations)

Big-? notations
I Big-O notation means the function grows no faster than
I Big-Ω means the function grows faster than, and
I Big-Θ notation means the function grows as fast as.

Used to provide asymptotic descriptions of algorithm performance

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 36 / 37

Further reading I

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 1, 2019 37 / 37

	Algorithm analysis
	Big-O Notation (and its friends)

