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Section 1

Duality
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Problem Recap

We will start with a problem in standard equality form.

max z = cTx + z0
such that Ax = b

and x ≥ 0

We call this the primal LP
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Dual

Primal (P)
max z = cTx + z0

such that Ax = b
and x ≥ 0

Consider a new LP called the dual problem (D)

min w = bTy + z0
such that ATy ≥ c

and y free
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Origin of the dual

Suppose there is an optimal solution (x∗, z∗) to the primal LP

max z = cTx + z0
such that Ax = b

and x ≥ 0

with z∗ = cTx∗ + z0.

We might have obtained this via Simplex

Initial Tableau

A b

−cT z0

Simplex

=⇒

Final Tableau

Â b̂

−ĉT ẑ0

where z∗ = ẑ0
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Origin of the dual
The final tableau comes from pivots, so there are some numbers
y∗1 , . . . , y

∗
m such that

−ĉj =
m∑
i=1

y∗i aij − cj , j = 1, . . . , n

ẑ0 =
m∑
i=1

y∗i bi + z0 .

At the end of Simplex −ĉj ≥ 0 so

m∑
i=1

y∗i aij ≥ cj for j = 1, . . . , n.

So let’s consider any variables y1, . . . , ym which satisfy

m∑
i=1

yiaij ≥ cj , for j = 1, . . . , n.

We could look for an optimisation to find the y∗
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Origin of the dual
Let’s build a new objective function with

w =
m∑
i=1

yibi + z0.

From the Primal, bi =
∑n

j=1 aijxj so

w =
m∑
i=1

yi

 n∑
j=1

aijxj

+ z0

=
n∑

j=1

(
m∑
i=1

yiaij

)
xj + z0

≥
n∑

j=1

cjxj + z0

Hence w ≥ z , but also the above is true for any feasible x, so w ≥ ẑ0, the
optimal value of the primal. But we defined w so that w(y∗) = ẑ0, so ẑ0 is
the minimum of w .
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The Dual of an LP (Summary)

In the dual, variables become constraints, and visa versa

(P) max z =
n∑

j=1

cjxj + z0∑n
j=1 aijxj = bi , i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n

or

max z = cTx + z0,

Ax = b,

x ≥ 0.

(D) minw =
m∑
i=1

yibi + z0

yi free, i = 1, . . . ,m∑m
i=1 yiaij ≥ cj , j = 1, . . . , n

or

min w = yTb + z0,

yT A ≥ cT ,

y free.

Note how the lines are paired up
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Dual Example

Example (Dual)

(P) max z = 3x1 − x2 + x3
s.t. x1 + 2x2 = 5

x1 − x2 + x3 = 7
x2 + 6x3 = 11

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(D) min w = 5y1 + 7y2 + 11y3
s.t. y1 + y2 ≥ 3

2y1 − y2 + y3 ≥ −1
y2 + 6y3 ≥ 1

y1, y2 and y3 are all free variables.
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Why do we call it the dual?

Theorem

The Dual of the Dual is the Primal.

Proof: The dual is

min w = bTy + z0
such that ATy ≥ c

and y free

We convert to standard equality form by

multiplying the objective by -1 (to make it a max)

multiplying the constraints by -1

adding slack variables

replacing free variables yi with non-negative variables y+i ≥ 0 and
y−i ≥ 0 such that yi = y+i − y−i ,
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Why do we call it the dual?

Proof: (continued) The dual, written in standard equality form is (D’)

max −w = bTy− − bTy+ − z0
such that ATy− − ATy+ + s = −c

and y+, y−, s ≥ 0

Now we can take the dual of (D’) which we denote (DD) by creating a
variable xi for each constraint, and a constraint for each variable yj and sj .

min u = −cTx− z0
such that Ax ≥ bT from y−

and −Ax ≥ −bT from y+

and x ≥ 0 from s
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Why do we call it the dual?

Proof: (continued) We have (DD)

min u = −cTx− z0
such that Ax ≥ bT from y−

and −Ax ≥ −bT from y+

and x ≥ 0 from s

Note that

we can multiply the objective by -1 (to have a max)

The constraints Ax ≥ bT and Ax ≤ bT together imply that Ax = b.

So (DD) ≡ (P).

Q.E.D.
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Weak Duality

Primal Dual
max z = cTx + z0

Ax = b
x ≥ 0

minw = bTy + z0
ATy ≥ c

y free

Theorem

Given primal and dual problems as above have feasible solutions x and y,
then z ≤ w .
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Weak Duality Proof

Proof: We essentially showed this earlier:

w =
m∑
i=1

yibi + z0

=
m∑
i=1

yi

 n∑
j=1

aijxj

+ z0 because (P) requires bi =
n∑

j=1

aijxj

=
n∑

j=1

(
m∑
i=1

yiaij

)
xj + z0 swapping order of summation

≥
n∑

j=1

cjxj + z0 from constraints of (D)

= z

Hence w ≥ z
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Weak Duality Consequences

Corollary

If we have feasible solutions x and y to the primal and dual respectively
and w = z , then these are optimal solutions to their respective problems.

Proof: w is an upper bound on z (and visa versa), so if z = w for a
feasible solution, it has achieved its upper bound, and hence we have an
optimal solution.

Q.E.D.
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Boundedness v Feasibility

Corollary

If the primal (dual) problem is unbounded then the dual (primal) problem
is infeasible.

Proof: If the primal were feasible and unbounded, then that means there
can be no upper bound on z , so we cannot have a feasible solution the
dual.
Similarly if the dual is unbounded.

Q.E.D.
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Strong Duality

Theorem

If the primal (dual) problem has a finite optimal solution, then so does the
dual (primal) problem, and these two values are equal.

Proof: see later as a result of complementary slackness.
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The Dual of an LP – 12
Summary of Results for Primal/Dual pair (P) and (D)

1 For a feasible solution x1, . . . , xn of (P), with value z , and a feasible
solution y1, . . . , ym of (D), with value w , we have
w ≥ z (Weak Duality)

2 If (P) has an optimal solution then (D) has an optimal solution and
max z = min w (Strong Duality)

3 Because the dual of the dual is the primal, if (D) has an optimal
solution then (P) has an optimal solution and
max z = min w (Strong Duality)

4 If (P) has no optimal solution (z →∞) then (D) cannot have a
feasible solution (as w ≥ max z), and if (D) has no optimal solution
(w → −∞) then (P) cannot have a feasible solution (as z ≤ minw).
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The Dual of an LP – 13
Summary of Results for Primal/Dual pair (P) and (D)

Primal (P)

stop 1 stop 2 stop 3
optimal feasible soln, no feasible
solution no opt. soln solution

Dual
(D)

stop 1
optimal possible ‡ impossible impossible
solution

stop 2
feas. soln, impossible impossible possible

no opt. soln

stop 3
no feasible impossible possible possible

solution

‡ (max z = min w)
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Section 2

Complementary Slackness
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Complementary slackness

Theorem (Complementary slackness)

Given primal problem P and dual problem D with feasible solutions x and
y, respectively, then x is an optimal solution of (P) and y an optimal
solution of (D) if and only if

xj

(
m∑
i=1

yiaij − cj

)
= 0, for j = 1, . . . , n.

Implicit in this theorem is the Strong Duality Theorem, which we prove
now, and the second part is called the complementary slackness relations.

Definition (Complementary Slackness Relations)

The relations xj

(
m∑
i=1

yiaij − cj

)
= 0, for each j = 1, . . . , n are called the

Complementary Slackness Relations (CSR).
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Complementary slackness proof

Proof: We have already seen the argument:

z =
n∑

j=1

cjxj + z0 ≤
n∑

j=1

m∑
i=1

yiaijxj + z0

(
as

m∑
i=1

yiaij ≥ cj , xj ≥ 0

)

=
m∑
i=1

n∑
j=1

aijxjyi + z0

=
m∑
i=1

yibi + z0 = w

as
n∑

j=1

aijxj = bi


So z ≤ w for all feasible solutions
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Complementary slackness proof

Proof : (cont)

From Strong Duality, if we have an optimal solution, then z∗ = w∗.
Reversing the above logic, we get

n∑
j=1

cjxj + z0 =
n∑

j=1

(
m∑
i=1

yiaijxj

)
+ z0

which, when we group the xi terms together gives

n∑
j=1

(
m∑
i=1

yiaij − cj

)
xj = 0
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Complementary slackness proof

Proof : (cont)

If we know that nj ≥ 0, and we have∑
j

nj = 0

then we must have nj = 0.
This applies here because we know from the LP dual and primals that

m∑
i=1

yiaij − cj ≥ 0 and xj ≥ 0.

Hence (
m∑
i=1

yiaij − cj

)
xj = 0, for each j = 1, . . . , n.
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Complementary Slackness: Example

Primal Tableax (P)

x1 x2 x3 x4 x5 b

2 −1 −1 1 0 1
2 2 1 −2 0 3
1 1 1 1 1 2
−1 1 1 1 0 0

Simplex Phase I and II

1 0 −1
6 0 0 5

6

0 1 2
3 −1 0 2

3

0 0 1
2 2 1 1

2

0 0 1
6 2 0 1

6

Resulting solution x∗ = (5/6, 2/3, 0, 0, 1/2), with z∗ = 1/6.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 26, 2019 25 / 30



Complementary Slackness: Example

Primal Tableax (P)
x1 x2 x3 x4 x5 b

2 −1 −1 1 0 1
2 2 1 −2 0 3
1 1 1 1 1 2
−1 1 1 1 0 0

⇒

Dual Tableax (D)
(note that these represent ≥)
y1 y2 y3 c

2 2 1 1
−1 2 1 −1
−1 1 1 −1

1 −2 1 −1
0 0 1 0
−1 −3 −2 0
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Complementary slackness
Write down the dual (D) of (P).

(D) min w = y1 + 3y2 + 2y3
2y1 + 2y2 + y3 ≥ 1 (iv)

− y1 + 2y2 + y3 ≥ −1 (v)
− y1 + y2 + y3 ≥ −1 (vi)

y1 − 2y2 + y3 ≥ −1 (vii)
y3 ≥ 0 (viii)

y1, y2 and y3 are all free variables1. (i)-(iii)

Writing down the CSR, we see that

From (iv), we get (2y∗1 + 2y∗2 + y∗3 − 1) x∗1 = 0 and since x∗1 > 0,
we have 2y∗1 + 2y∗2 + y∗3 = 1.

From (v), since x∗2 > 0, we have −y∗1 + 2y∗2 + y∗3 = −1.

Similarly, from (viii), since x∗5 > 0, we have y∗3 = 0.
1Note the last constraint tightens y3, but this is OK.
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Complementary slackness

Thus from the CSR for (iv),(v) and (viii) we see that

2y∗1 + 2y∗2 + y∗3 = 1

−y∗1 + 2y∗2 + y∗3 = −1

y∗3 = 0

Solving these equalities for y∗1 , y
∗
2 , y

∗
3 , we get y∗1 =

2

3
, y∗2 = −1

6
, y∗3 = 0,

which need to be checked for feasibility in the other constraints:
That is,

(vi) −2
3 −

1
6 + 0 > −1

(vii) 2
3 + 1

3 + 0 > −1.

Also note that z∗ =
5

6
− 2

3
=

1

6
= w∗ =

2

3
− 3× 1

6
=

2

3
− 1

2
=

1

6
.
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Takeaways

Optimisation problems have a Dual
I this is a very general concept, and holds beyond LPs

Complementary slackness relates dual solutions to primal
I these give us an edge in knowing when we have found optimal solutions
I we’ll use these later!
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Further reading I
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