Optimisation and Operations Research Lecture 9: Duality and Complementary Slackness

Matthew Roughan <matthew.roughan@adelaide.edu.au>

http:

//www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/

School of Mathematical Sciences, University of Adelaide

August 26, 2019

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Section 1

Duality

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Problem Recap

We will start with a problem in *standard equality form*.

$$\begin{array}{rcl} \max & z & = & \mathbf{c}^T \mathbf{x} + z_0 \\ \text{such that} & A \mathbf{x} & = & \mathbf{b} \\ & \text{and} & \mathbf{x} & \geq & 0 \end{array}$$

We call this the *primal* LP

A 🖓

Dual

Primal (P)

$$\begin{array}{rcl} \max & z &= \mathbf{c}^T \mathbf{x} + z_0 \\ \text{such that} & A \mathbf{x} &= \mathbf{b} \\ \text{and} & \mathbf{x} &\geq 0 \end{array}$$

Consider a new LP called the *dual* problem (D)

$$\begin{array}{rcl} \min & w & = & \mathbf{b}^T \mathbf{y} + z_0 \\ \text{such that} & A^T \mathbf{y} & \geq & \mathbf{c} \\ & \text{and} & \mathbf{y} & \textit{free} \end{array}$$

э

3

• • • • • • • • • • • •

Origin of the dual

Suppose there is an optimal solution (\mathbf{x}^*, z^*) to the primal LP

$$\begin{array}{rcl} \max & z &= & \mathbf{c}^T \mathbf{x} + z_0 \\ \text{such that} & A \mathbf{x} &= & \mathbf{b} \\ & \text{and} & \mathbf{x} &\geq & 0 \end{array}$$

with $z^* = \mathbf{c}^T \mathbf{x}^* + z_0$.

We might have obtained this via Simplex

OORI

Origin of the dual

The final tableau comes from pivots, so there are some numbers y_1^*, \ldots, y_m^* such that

$$egin{aligned} &-\hat{c}_{j} &= \sum_{i=1}^{m} y_{i}^{*} a_{ij} - c_{j}, \quad j = 1, \dots, n \ &\hat{z}_{0} &= \sum_{i=1}^{m} y_{i}^{*} b_{i} + z_{0} \ . \end{aligned}$$

At the end of Simplex $-\hat{c}_j \ge 0$ so

$$\sum_{i=1}^m y_i^* a_{ij} \ge c_j \quad \text{for } j = 1, \dots, n.$$

So let's consider any variables y_1, \ldots, y_m which satisfy

$$\sum_{i=1}^m y_i a_{ij} \ge c_j, \text{ for } j = 1, \dots, n$$

We could look for an optimisation to find the \mathbf{y}^* \mathbf{y}^*

Origin of the dual

Let's build a new objective function with

$$w=\sum_{i=1}^m y_ib_i+z_0.$$

From the Primal, $b_i = \sum_{j=1}^n a_{ij} x_j$ so

$$w = \sum_{i=1}^{m} y_i \left(\sum_{j=1}^{n} a_{ij} x_j \right) + z_0$$
$$= \sum_{j=1}^{n} \left(\sum_{i=1}^{m} y_i a_{ij} \right) x_j + z_0$$
$$\geq \sum_{j=1}^{n} c_j x_j + z_0$$

Hence $w \ge z$, but also the above is true for any feasible **x**, so $w \ge \hat{z}_0$, the optimal value of the primal. But we defined w so that $w(\mathbf{y}^*) = \hat{z}_0$, so \hat{z}_0 is the minimum of w.

Matthew Roughan (School of Mathematical

The Dual of an LP (Summary)

In the dual, variables become constraints, and visa versa

$$(P) \max z = \sum_{j=1}^{n} c_j x_j + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$y_i \text{ free, } i = 1, \dots, m$$

$$x_j \ge 0, \quad j = 1, \dots, n$$
or
$$\max z = \mathbf{c}^T \mathbf{x} + z_0,$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

$$(D) \min w = \sum_{i=1}^{m} y_i b_i + z_0$$

Note how the lines are paired up

Dual Example

Example (Dual)

Why do we call it the dual?

Theorem

The Dual of the Dual is the Primal.

Proof: The dual is

$$\begin{array}{rcl} \min & w & = & \mathbf{b}^T \mathbf{y} + z_0 \\ \text{such that} & A^T \mathbf{y} & \geq & \mathbf{c} \\ & \text{and} & \mathbf{y} & \textit{free} \end{array}$$

We convert to standard equality form by

- multiplying the objective by -1 (to make it a max)
- multiplying the constraints by -1
- adding slack variables
- replacing free variables y_i with non-negative variables $y_i^+ \ge 0$ and $y_i^- \ge 0$ such that $y_i = y_i^+ y_i^-$,

- 3

- 4 同 6 4 日 6 4 日 6

Why do we call it the dual?

Proof: (continued) The dual, written in standard equality form is (D')

$$\begin{array}{rcl} \max & -w & = & \mathbf{b}^T \mathbf{y}^- - \mathbf{b}^T \mathbf{y}^+ - z_0 \\ \text{such that} & A^T \mathbf{y}^- - A^T \mathbf{y}^+ + \mathbf{s} & = & -\mathbf{c} \\ \text{and} & & \mathbf{y}^+, \mathbf{y}^-, \mathbf{s} & \geq & 0 \end{array}$$

Now we can take the dual of (D') which we denote (DD) by creating a variable x_i for each constraint, and a constraint for each variable y_j and s_j .

$$\begin{array}{rcl} \min & u & = & -\mathbf{c}^T \mathbf{x} - z_0 \\ \text{such that} & A\mathbf{x} & \geq & \mathbf{b}^T & & \text{from } \mathbf{y}^- \\ \text{and} & -A\mathbf{x} & \geq & -\mathbf{b}^T & & \text{from } \mathbf{y}^+ \\ \text{and} & \mathbf{x} & \geq & 0 & & \text{from } \mathbf{s} \end{array}$$

Why do we call it the dual?

Proof: (continued) We have (DD)

min	и	=	$-\mathbf{c}^T\mathbf{x}-z_0$	
such that	Ax	\geq	$\mathbf{b}^{\mathcal{T}}$	from \mathbf{y}^-
and	$-A\mathbf{x}$	\geq	$-\mathbf{b}^{T}$	from \mathbf{y}^+
and	х	\geq	0	from s

Note that

• we can multiply the objective by -1 (to have a max)

• The constraints $A\mathbf{x} \ge \mathbf{b}^T$ and $A\mathbf{x} \le \mathbf{b}^T$ together imply that $A\mathbf{x} = \mathbf{b}$. So (DD) \equiv (P).

Q.E.D.

Weak Duality

PrimalDual $\max z = \mathbf{c}^T \mathbf{x} + z_0$ $\min w = \mathbf{b}^T \mathbf{y} + z_0$ $A\mathbf{x} = \mathbf{b}$ $A^T \mathbf{y} \ge \mathbf{c}$ $\mathbf{x} \ge 0$ \mathbf{y} free

Theorem

Given primal and dual problems as above have feasible solutions \mathbf{x} and \mathbf{y} , then $z \leq w$.

3

Weak Duality Proof

Proof: We essentially showed this earlier:

$$w = \sum_{i=1}^{m} y_i b_i + z_0$$

= $\sum_{i=1}^{m} y_i \left(\sum_{j=1}^{n} a_{ij} x_j\right) + z_0$ because (P) requires $b_i = \sum_{j=1}^{n} a_{ij} x_j$
= $\sum_{j=1}^{n} \left(\sum_{i=1}^{m} y_i a_{ij}\right) x_j + z_0$ swapping order of summation
 $\geq \sum_{j=1}^{n} c_j x_j + z_0$ from constraints of (D)
= z

Hence $w \ge z$

3

(日) (同) (三) (三)

Weak Duality Consequences

Corollary

If we have feasible solutions \mathbf{x} and \mathbf{y} to the primal and dual respectively and w = z, then these are optimal solutions to their respective problems.

Proof: w is an upper bound on z (and visa versa), so if z = w for a feasible solution, it has achieved its upper bound, and hence we have an optimal solution.

Q.E.D.

Boundedness v Feasibility

Corollary

If the primal (dual) problem is unbounded then the dual (primal) problem is infeasible.

Proof: If the primal were feasible and unbounded, then that means there can be no upper bound on z, so we cannot have a feasible solution the dual.

Similarly if the dual is unbounded.

Q.E.D.

Strong Duality

Theorem

If the primal (dual) problem has a finite optimal solution, then so does the dual (primal) problem, and these two values are equal.

Proof: see later as a result of complementary slackness.

The Dual of an LP - 12

Summary of Results for Primal/Dual pair (P) and (D)

- For a feasible solution x₁,..., x_n of (P), with value z, and a feasible solution y₁,..., y_m of (D), with value w, we have w ≥ z (Weak Duality)
- If (P) has an optimal solution then (D) has an optimal solution and max z = min w (Strong Duality)
- Because the dual of the dual is the primal, if (D) has an optimal solution then (P) has an optimal solution and max z = min w (Strong Duality)
- If (P) has no optimal solution (z → ∞) then (D) cannot have a feasible solution (as w ≥ max z), and if (D) has no optimal solution (w → -∞) then (P) cannot have a feasible solution (as z ≤ min w).

The Dual of an LP -13

Summary of Results for Primal/Dual pair (P) and (D)

		Primal (<i>P</i>)			
		stop 1 optimal solution	stop 2 feasible sol ⁿ , no opt. sol ⁿ	stop 3 no feasible solution	
	stop 1 optimal solution	possible ‡	impossible	impossible	
Dual (D)	stop 2 feas. sol ⁿ , no opt. sol ⁿ	impossible	impossible	possible	
	stop 3 no feasible solution	impossible	possible	possible	

$$\ddagger (\mathsf{max} \ z = \mathsf{min} \ w)$$

3

(日) (同) (三) (三)

Section 2

Complementary Slackness

(日) (同) (三) (三)

Complementary slackness

Theorem (Complementary slackness)

Given primal problem P and dual problem D with feasible solutions \mathbf{x} and \mathbf{y} , respectively, then \mathbf{x} is an optimal solution of (P) and \mathbf{y} an optimal solution of (D) if and only if

$$x_j\left(\sum_{i=1}^m y_i a_{ij} - c_j\right) = 0, \quad for \ j = 1, \ldots, n.$$

Implicit in this theorem is the Strong Duality Theorem, which we prove now, and the second part is called the *complementary slackness* relations.

Definition (Complementary Slackness Relations)
The relations
$$x_j \left(\sum_{i=1}^m y_i a_{ij} - c_j \right) = 0$$
, for each $j = 1, ..., n$ are called the *Complementary Slackness Relations* (CSR).

Complementary slackness proof

Proof: We have already seen the argument:

$$z = \sum_{j=1}^{n} c_j x_j + z_0 \le \sum_{j=1}^{n} \sum_{i=1}^{m} y_i a_{ij} x_j + z_0$$
 (as $\sum_{i=1}^{m} y_i a_{ij} \ge c_j, x_j \ge 0$)

$$=\sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}x_jy_i+z_0$$

$$=\sum_{i=1}^m y_i b_i + z_0 = w \qquad \left(\text{as } \sum_{j=1}^n a_{ij} x_j = b_i \right)$$

So $z \leq w$ for all feasible solutions

Complementary slackness proof

Proof : (cont)

From Strong Duality, if we have an optimal solution, then $z^* = w^*$. Reversing the above logic, we get

$$\sum_{j=1}^{n} c_j x_j + z_0 = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} y_i a_{ij} x_j \right) + z_0$$

which, when we group the x_i terms together gives

$$\sum_{j=1}^{n} \left(\sum_{i=1}^{m} y_i a_{ij} - c_j \right) x_j = 0$$

Complementary slackness proof

Proof : (cont)

If we know that $n_j \ge 0$, and we have

$$\sum_j n_j = 0$$

then we must have $n_i = 0$.

This applies here because we know from the LP dual and primals that

$$\sum_{i=1}^m y_i a_{ij} - c_j \ge 0 \text{ and } x_j \ge 0.$$

Hence

$$\left(\sum_{i=1}^m y_i a_{ij} - c_j\right) x_j = 0, \text{ for each } j = 1, \dots, n.$$

Complementary Slackness: Example

	Prima	i iad	ieax (P)	
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>x</i> 5	b
2	-1	-1	1	0	1
2	2	1	-2	0	3
1	1	1	1	1	2
-1	1	1	1	0	0

 \square

Simplex Phase I and II

Resulting solution $\mathbf{x}^* = (5/6, 2/3, 0, 0, 1/2)$, with $z^* = 1/6$.

Complementary Slackness: Example

Dual Tableax (D) (note that these represent \geq) С *Y*2 *Y*3 y_1 2 2 1 1 2 1 -1 \Rightarrow $^{-1}$ 1 1 -1

1

1

 $^{-2}$

-1

0

0

< 🗇 🕨

Matthew Roughan (School of Mathematical

1

0

 $^{-1}$

 $^{-2}$

0

-3

Complementary slackness

Write down the dual (D) of (P).

Writing down the CSR, we see that

- From (iv), we get $(2y_1^* + 2y_2^* + y_3^* 1)x_1^* = 0$ and since $x_1^* > 0$, we have $2y_1^* + 2y_2^* + y_3^* = 1$.
- From (v), since $x_2^* > 0$, we have $-y_1^* + 2y_2^* + y_3^* = -1$.
- Similarly, from (viii), since $x_5^* > 0$, we have $y_3^* = 0$.

¹Note the last constraint tightens y_3 , but this is OK. (\Box) (\Box)

Complementary slackness

Thus from the CSR for (iv),(v) and (viii) we see that

$$2y_1^* + 2y_2^* + y_3^* = 1$$

-y_1^* + 2y_2^* + y_3^* = -1
y_3^* = 0

Solving these equalities for y_1^*, y_2^*, y_3^* , we get $y_1^* = \frac{2}{3}$, $y_2^* = -\frac{1}{6}$, $y_3^* = 0$, which need to be checked for feasibility in the other constraints: That is,

$$(v_{1}) -\frac{2}{3} - \frac{1}{6} + 0 > -1$$

$$(v_{1}) -\frac{2}{3} + \frac{1}{3} + 0 > -1.$$
Also note that
$$z^{*} = \frac{5}{6} - \frac{2}{3} = \frac{1}{6} = \frac{1}{2} - 3 \times \frac{1}{6} = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}.$$

Takeaways

- Optimisation problems have a Dual
 - this is a very general concept, and holds beyond LPs
- Complementary slackness relates dual solutions to primal
 - these give us an edge in knowing when we have found optimal solutions
 - we'll use these later!

Further reading I

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト