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Section 1

Duality



Problem Recap

We will start with a problem in standard equality form.

max z = c'x + 2
suchthat Ax = b
and x > 0

We call this the primal LP

Matthew Roughan (School of Mathematical ¢ August 26, 2019 3 /30



Dual

Primal (P)
max z = c’x + 20

such that Ax = b
and x > 0

Consider a new LP called the dual problem (D)

min w = bly+z
such that ATy > c
and y free
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Origin of the dual

Suppose there is an optimal solution (x*,z*) to the primal LP

max z = c'x + Zp
suchthat Ax = b
and x > 0
with z* = ¢"x* + z,.
We might have obtained this via Simplex
Initial Tableau . Final Tableau
Simplex
e N ~
A b A b
—CT 20 —éT fo

where z* = Z
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Origin of the dual

The final tableau comes from pivots, so there are some numbers
Y1+, Ym such that

m

o « .

—Gj :E yiaj—c, j=1,...,n
i=1

m
20 :Zy;kbi+20 .
i=1

At the end of Simplex —¢; > 0 so

m
Zy,f"aUZCJ- forj=1,...,n.
i=1

So let's consider any variables yi, ..., ym which satisfy

m
Zy,-a,-chj, for j=1,...,n.
i=1

We could look for an optimisation to find the y*
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Origin of the dual

Let’s build a new objective function with

m
w = Zy,'b,' + z9.
i=1

From the Primal, b; = 37, aix; so

m n
w = Zy; Z ajjXj + 20
i=1 j=1
n m
= Z (Z%‘&j) Xj+ 2o

j=1 \i=1
n

> E Cixj + 2o
Jj=1

Hence w > z, but also the above is true for any feasible x, so w > 2, the
optimal value of the primal. But we defined w so that w(y*) = 2y, so 2 is
the minimum of w.
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The Dual of an LP (Summary)

In the dual, variables become constraints, and visa versa

n
(P) maxz= chxj + 20

(D) minW:Zy,-b,--l—zo

j=1 i=1
ZJ’-'Zla,-jxj:b,-, i=1,....m yi free, i=1,...,m
x>0, j=1,....n Sriviaj>c, j=1,...,n
or or
max z=c'x+ z, min  w=y’ b+ z,
Ax = b, yTA>cT,
x > 0. y free.

Note how the lines are paired up
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Dual Example

Example (Dual)

(P) max z = 3x1 — X2 + X3
s.t. x1 + 2x = 5
XX — X + x3 = T
X 4+ 6x3 = 11

X1207X2207 X320'

(D) min w = 5y1 + Ty» + 1lys
s.t. i + > 3
2y — v + 3 =2 -1
o+ byz > 1
y1, yo and y3 are all free variables.
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Why do we call it the dual?

Theorem

The Dual of the Dual is the Primal.

Proof: The dual is

min w =
such that ATy >

and y free

We convert to standard equality form by

b™y + z
c

e multiplying the objective by -1 (to make it a max)
@ multiplying the constraints by -1
@ adding slack variables

@ replacing free variables y; with non-negative variables y,+ >0 and
y; > 0 such that y; = y,-Jr -y,
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Why do we call it the dual?

Proof: (continued) The dual, written in standard equality form is (D")

max —w = bTy —bTyt — 2z
such that ATy" — ATyt +s = —c
and yh,y,s > 0

Now we can take the dual of (D') which we denote (DD) by creating a
variable x; for each constraint, and a constraint for each variable y; and s;.

T

min u = —c'x—2z

such that Ax > b’ from y—
and —Ax > —b' from y*
and x > 0 from s
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Why do we call it the dual?

Proof: (continued) We have (DD)

T

min u = —c'x—2z

suchthat Ax > b’ from y~
and —Ax > —b' from y*
and x > 0 from s

Note that

@ we can multiply the objective by -1 (to have a max)

@ The constraints Ax > b’ and Ax < b” together imply that Ax = b.
So (DD) = (P).

Q.E.D.
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Weak Duality

Primal Dual

maxz = c¢'x+ z minw = bTy+4 z
Ax = b ATy > ¢
x > 0 y free

Theorem
Given primal and dual problems as above have feasible solutions x and'y,
then z < w.
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Weak Duality Proof

Proof: We essentially showed this earlier:
m
w o= Y yibi+2z
i=1

m n n
= Zy,- Z ajxj | +2z0 because (P) requires b; = Z ajjx;
i=1  \Jj=1 j=1

n

m
= Z Zy,-a,-j Xj+ zo  swapping order of summation

j=1 \i=1
n
> Z cixj + 20 from constraints of (D)
j=1
= z

Hence w > z
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Weak Duality Consequences

Corollary

If we have feasible solutions x and 'y to the primal and dual respectively
and w = z, then these are optimal solutions to their respective problems.

Proof: w is an upper bound on z (and visa versa), so if z= w for a
feasible solution, it has achieved its upper bound, and hence we have an
optimal solution.

Q.E.D.
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Boundedness v Feasibility

Corollary

If the primal (dual) problem is unbounded then the dual (primal) problem
is infeasible.

Proof: If the primal were feasible and unbounded, then that means there
can be no upper bound on z, so we cannot have a feasible solution the

dual.
Similarly if the dual is unbounded.

Q.E.D.
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Strong Duality

Theorem

If the primal (dual) problem has a finite optimal solution, then so does the
dual (primal) problem, and these two values are equal.

Proof: see later as a result of complementary slackness.
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The Dual of an LP - 12

Summary of Results for Primal/Dual pair (P) and (D)

© For a feasible solution xi, ..., x, of (P), with value z, and a feasible
solution yi, ..., ym of (D), with value w, we have
w > z (Weak Duality)

@ If (P) has an optimal solution then (D) has an optimal solution and
max z = min w (Strong Duality)

© Because the dual of the dual is the primal, if (D) has an optimal
solution then (P) has an optimal solution and
max z = min w (Strong Duality)

Q If (P) has no optimal solution (z — oo) then (D) cannot have a
feasible solution (as w > max z), and if (D) has no optimal solution
(w — —o0) then (P) cannot have a feasible solution (as z < min w).
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The Dual of an LP - 13

Summary of Results for Primal/Dual pair (P) and (D)

Primal (P)
stop 1 stop 2 stop 3
optimal feasible sol”, no feasible
solution no opt. sol” solution
stop 1
optimal possible 1 impossible impossible
solution
stop 2
Dual feas. sol”, impossible impossible possible
(D) no opt. sol”
stop 3
no feasible impossible possible possible
solution

I (max z = min w)
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Section 2

Complementary Slackness



Complementary slackness

Theorem (Complementary slackness)

Given primal problem P and dual problem D with feasible solutions x and
y, respectively, then x is an optimal solution of (P) and'y an optimal
solution of (D) if and only if

m
Xj(Z)/ialj—Cj> =0, for j=1,...,n
i=1

Implicit in this theorem is the Strong Duality Theorem, which we prove
now, and the second part is called the complementary slackness relations.

Definition (Complementary Slackness Relations)

The relations x; (Z yiajj — cj> =0, foreach j=1,...,n are called the
i=1
Complementary Slackness Relations (CSR).
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Complementary slackness proof

Proof: We have already seen the argument:

m
Z—Zq&+Zo<ZZy,auxj+zo (as > yiaj > ¢, XJ-20>

j=1i=1 i=1

m n
= Z Z ajjX;yi + 2o

i=1 j=1
m n

— E Yibi —|— 20 = w as E a’JXJ = bl
i=1 Jj=1

So z < w for all feasible solutions
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Complementary slackness proof

Proof : (cont)

From Strong Duality, if we have an optimal solution, then z* = w*.
Reversing the above logic, we get

n n m
j=1 j=1 \i=1
which, when we group the x; terms together gives

Z(Zy;afj—q>>g:0

j=1 \i=1
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Complementary slackness proof
Proof : (cont)

If we know that n; > 0, and we have
> n=0
J

then we must have n; = 0.
This applies here because we know from the LP dual and primals that

m
Zy,-a,-j—cj20 and x; > 0.
i=1

Hence
m
(Zy;ay—(:J-)xj:O, foreachj=1,...,n.
i=1
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Complementary Slackness: Example

Primal Tableax (P)

X1 X X3 x4 Xs b
2 -1 -1 1 0 1
2 2 1 -2 0 3
1 1 1 1 1 2

-1 1 1 1 0 O

Simplex Phase | and Il

1 0 - o0 o0 2
o 1 2 -1 0 32
o o & 2 11
o o &t 2 o0 %

Resulting solution x* = (5/6,2/3,0,0,1/2), with z* = 1/6.
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Complementary Slackness: Example

Dual Tableax (D)
(note that these represent >)

Primal Tableax (P) sy c
1 Y2 y3

X1 X X3 Xa X5 b > > 1 1
2 -1 -1 1 0 1 | 1 5 1 1
2 2 1 -2 0 3
-1 1 1 -1
1 1 1 1 1 2
-1 1 1 1 0 0 1 =2 1
0 0 1 0
-1 -3 =2 0
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Complementary slackness
Write down the dual (D) of (P).

(D) minw = y1 + 3yo+ 2y3

2+ 2+ y3 > 1 (iv)
-+ 2nt+ y3 = -1 (v
-+ y+yn=>-1 (vi)

yi — 2o+ y3 > —1 (vii)

y3 > 0 (viii)

y1, y2 and y3 are all free variables. (i)-(iii)

Writing down the CSR, we see that
e From (iv), we get (2y; +2y5 + y5 — 1) x{ = 0 and since x;' > 0,
we have 2y +2y5 + y3 = 1.

e From (v), since x3 > 0, we have —y; +2y5 + y5 = —1.

e Similarly, from (viii), since x > 0, we have y; = 0.

'Note the last constraint tightens ys, but this is OK.
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Complementary slackness

Thus from the CSR for (iv),(v) and (viii) we see that

2y +2p +y3 =1
—yi+2y +y;=-1
y; =0
Solving these equalities for v, y5,y3, we get y;' = =, y5 = ——, y53 =0,

6
which need to be checked for feasibility in the other constraints:

That is,

(vi) —%—%-1-0 > -1

(vii) %-l—%-I-O > -1

5 2 1 ‘ 2 1 2 1
AIsonotethatz*:é—gz6 = W?‘:§_3x6:§_§ :

Matthew Roughan (School of Mathematical ¢ August 26, 2019 28 / 30



Takeaways

@ Optimisation problems have a Dual
> this is a very general concept, and holds beyond LPs
@ Complementary slackness relates dual solutions to primal

> these give us an edge in knowing when we have found optimal solutions
> we'll use these later!
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