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Section 1

Integer Programming Problems
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Section 2

Native Integer Variables
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Integer variables

A long time ago, in Lecture 1, we looked at our first problem: A
manufacturing scheduling problem

max z = 13x1 + 12x2 + 17x3
s.t. 2x1 + x2 + 2x3 ≤ 225

x1 + x2 + x3 ≤ 117
3x1 + 3x2 + 4x3 ≤ 420

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

x1 = the number of desks;

x2 = the number of chairs; and,

x3 = the number of bed frames, made per time period.

Shouldn’t we ensure that x1, x2 and x3 are integers?!
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Allocation problem – 1

Example (Knapsack problem)

A hiker can choose from the following items when packing a knapsack:

Item
1

chocolate
2

raisins
3

camera
4

jumper
5

drink

wi (kg) 0.5 0.4 0.8 1.6 0.6

vi (value) 2.75 2.5 1 5 3.0

vi/wi 5.5 6.25 1.25 3.125 5

However, the hiker cannot carry more than 2.5 kg all together.

Objective: choose the number of each item to pack in order to maximise
the total value of the goods packed, without violating the mass constraint.
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Allocation problem – 2

Example (Knapsack problem – Formulation)

Let xi bet the number of copies of item i to be packed, such that xi ≥ 0
and integer (cannot pack 1/2 a jumper!).

max v = 2.75x1 + 2.5x2 + x3 + 5x4 + 3x5

s.t. 0.5x1 + 0.4x2 + 0.8x3 + 1.6x4 + 0.6x5 ≤ 2.5

xi ≥ 0 and integer.
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Allocation problems

http://xkcd.com/287/
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Network Problems
Many optimisation problems are related to a Network or Graph
Consider a set of nodes (or vertices) N and a set of directed links (or
edges) L between those nodes. These directed links then give us a directed
network or directed graph G (N, L) like that below

1
2

3

4

6

5

7
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Network Problems
Many optimisation problems are related to a Network
Consider a set of nodes (or vertices) N and a set of undirected links (or
edges) L between those nodes. These directed links then give us an
undirected network G (N, L) like that below

1
2
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7
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Graph terminology

Definition (undirected graph)

An undirected graph has edges (or links) that are unordered pairs of nodes
{i , j} ∈ L, i , j ∈ N, meaning node i is adjacent to node j and visa versa.

Definition (directed graph)

A directed graph has edges (or arcs) that are ordered pairs of nodes (i , j),
meaning node i is adjacent to node j .
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Graph terminology

Example (Undirected graph)

1
2

3

4

6

5

7

G (N,E ) where N is the set of nodes, and E is the set of edges

N = {1, 2, 3, 4, 5, 6, 7}
E =

{
(1, 2), (1, 3), (2, 4), (2, 5), (3, 4), (3, 6), (4, 5), (4, 7), (5, 7), (6, 7)

}
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Graph terminology

A walk is an ordered list of nodes i1, i2, . . . , it such that, in an
undirected graph, {ik , ik+1} ∈ L, or, in a directed graph, (ik , ik+1) ∈ L
for k = 1, 2, . . . , t − 1.

A path is a walk where the nodes i1, i2, . . . , ik are all distinct.
I A graph is connected if there is a path connecting every pair of nodes.

A cycle is a walk where the nodes i1, i2, . . . , ik−1 are all distinct, but
i1 = ik .

I A directed graph is acyclic if it contains no cycles.
I we call it a DAG = Directed Acyclic Graph
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Network Problems

Example (The Travelling Salesperson Problem (TSP))

Given a set of towns, i = 1, . . . , n, and links (i , j) between the towns. The
links each have a specified length, given by a distance matrix

D =

1

2
...

i
...

n



1 2 · · · j · · · n
...
...
...

· · · · · · · · · dij


Objective: construct a directed cycle of minimum total distance going
through each town exactly once.
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TSP
The decision is, basically, which links do we choose to use in the tour.

xij =

{
1 if link (i , j) is chosen

0 if link (i , j) is not chosen

then the ILP (Integer Linear Program) formulation is

min d =
n∑

i=1

n∑
j=1

dijxij

s.t.
n∑

j=1

xij = 1, ∀i = 1, . . . , n (only one link from i)

n∑
i=1

xij = 1, ∀j = 1, . . . , n (only one link to j)

∑
i∈S

∑
j∈Sc

xij

 ≥ 1, ∀S ⊂ N (connectedness)

xij = 0 or 1 for all i , j
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Network Problems

http://xkcd.com/399/
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Other Network Problems
Graph and network problems come up a lot!

Example (Shortest path problem)

(Differs from a TSP in that it does not look for a tour through all nodes,
but rather a path from one node to another.)

Find a minimum length path through a network G (N, L), from a specified
source node, say 1, to a specified destination node n, where each link
(i , j) ∈ L has an associated length, dij .

Example (Maximum flow problem)

Given a network with a single source node (generator of traffic ) and a sink
(attractor of traffic); network has directed links with links (i , j) having an
upper capacity of uij .

We have no cost for unit flows, just bounds on the capacities of the links
and we wish to send the maximum flow from one specified node to
another.
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Section 3

Supplementary Integer Variables
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Supplementary Integer Variables

Sometimes the original variables in the problem aren’t variables, but we
have to add in extra, artificial variables for some other reason

disjoint objective functions
I fixed-cost problems

disjunctive constraints
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Disjoint objective function – fixed-cost problem

Example (Production planning)

Here we have N products, where the production cost for product j
(j = 1, . . . ,N) consists of a fixed setup cost Kj ≥ 0 and a variable cost cj
that depends on the number of copies of item j produced. That is, the
cost associated with producing xj copies of item j is

Cj(xj) =

{
Kj + cjxj xj > 0,

0 xj ≤ 0.

Objective: minimise total cost, min z =
∑N

j=1 Cj(xj), subject to xj ≥ 0,
and any other constraints on supplies, orders, etc.

Note that variables xj are not necessarily integer!
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Fixed costs problems

The problem is non-linear, because of the discontinuity at xj = 0 in Cj(xj),
which can be removed by introducing j new variables yj , where

yj =

{
1 xj > 0

0 xj = 0.

Then Cj(xj) = Kjyj + cjxj , and the problem can be formulated as

min z =
N∑
j=1

(Kjyj + cjxj)

s.t. xj ≥ 0

yj = 0 or 1

xj ≤ Myj (+other constraints, e.g., order sizes)

where M ≥ upper bound on all xj .
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Fixed costs problems

(a) The original problem didn’t have integer variables – these arose as
artificial variables to keep the problem linear.

(b) This is a mixed Integer, Linear Program (ILP), because some
variables are continuous and some are integers.

(c) If xj = 0 then minimising z requires yj = 0.

(d) For all production of item j given by xj > 0 means that we have to
set yj > 0 to satisfy the new constraints xj ≤ Myj for each item j .
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Disjunctive and conjunctive constraints

Definition

A constraint in the form of A and B is called conjunctive.

Most of our earlier constraints are already conjunctive – we require all of
them to be true in the feasible region.

Definition

A constraint in the form of A or B is called disjunctive.

These might be used to make it possible to create multiple (separate)
feasible regions.

Note, mathematicians sometimes denote AND by ∧ and OR by ∨
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Disjunctive constraints

Example (Sorta Auto)

Sorta Auto is considering manufacturing 3 types of of cars: compact,
medium and large. Resources required and profits yielded by each type of
car are

Compact Medium Large

Steel required (tonnes) 0.5 1 3

Labour required (hrs) 30 25 40

Profit ($ 1,000’s) 3 5 8

The amount of steel available is at most 2,000 tonnes and at most 60,000
hrs of labour are available. Production of any car type is feasible only if at
least 1,000 cars of that type are made.

Objective: maximise profit, by determining how many of each type to
produce, while satisfying the constraints.
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Disjunctive constraints
Variables 

x1 = number of compact cars produced

x2 = number of medium size cars produced

x3 = number of large size cars produced.

Then the objective function is

max 3x1 + 5x2 + 8x3

with constraints:
x1, x2, x3 ≥ 0, and integer

0.5x1 + x2 + 3x2 ≤ 2000

30x1 + 25x2 + 40x3 ≤ 60, 000

either x1 = 0 or x1 ≥ 1000

either x2 = 0 or x2 ≥ 1000

either x3 = 0 or x3 ≥ 1000.
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Disjunctive constraints

Instead of either xi = 0 or xi ≥ 1000 introduce binary variable yi such that
xi ≤ Miyi (a) (Mi large constant)

1000− xi ≤ Mi (1− yi ) (b)

yi ∈ {0, 1} (c)

Notice that

if xi > 0, then yi = 1 by both constraints (a) and (c)
⇒ xi ≥ 1000 because of constraint (b)

yi = 0 then xi = 0 by constraint (a)

and so we get the desired result!
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Disjunctive constraints in general

In general,

“either f (x) ≤ 0 or g(x) ≤ 0”

is equivalent to

“if f (x) > 0 then g(x) ≤ 0”.

Introduce 0−1 variable y and the constraints

g(x) ≤ M(1− y), f (x) ≤ My

where M is a large, positive number.

if f (x) > 0, then y > 0 and so y = 1, giving g(x) ≤ 0.

if y = 0 then f (x) ≤ 0.
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Section 4

Integer Programming: Näıve Solutions
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Näıve solutions

1 Exhaustive search

2 Approximate with a LP

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 28 / 36



Exhaustive search

When first considering (LP)s we suggested solving them by
enumerating all basic solutions, determining which were feasible ones,
and then choosing the one which gave the optimal evaluation of the
objective function.

I we saw this was a bad idea (there are too many possibilities)
I but we have restricted the space now, maybe exhaustive works?

Approach
I enumerate every potential solution,
I check its feasibility, and
I from amongst the feasible ones, choose the one that gives the optimal

value of the objective function.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 29 / 36



Exhaustive search

Consider a simple binary linear program with n binary variables
I there are 2n possible solutions
I that is O(exp(n))

so an exhaustive search is hopeless for even moderate n.

Consider the TSP
I N towns to visit
I

(N − 1)!

2
different tours.

For example, if there were N = 100 towns to visit, this is then
4.6663× 10157 different tours.

Exhaustive searches are a really bad idea except for toy problems.
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Approximate with a LP

1 Idea: drop the integrality constraint and solve the resulting LP
I we know how to solve LPs efficiently
I sounds a bit like rounding off, so there might be some errors, but how

big can they be?

2 We call this relaxation
I in general relaxation means loosening up some constraint
I here we relax the integer constraint
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Relaxation (of integrality)
We can guess that rounding might not be optimal, but it can be far away
from optimal!

     objective

optimum of LP

optimum of ILP

rounded down

It gets worse in higher dimensions.
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Relaxation (of integrality)

Solving a relaxed (LP) may lead to different solutions

they might not even be feasible

Example

max z = 3x + y

s.t. 0.8x + y ≥ 2.1

1.2x + y ≤ 2.8

x , y ≥ 0 (and integral.)

2.65

x

y

1.2x+y=2.8

feasible region

0.8x+y=2.1

2.8

2.1

1

1 2 2.5

So relaxation is a crude tool, but it can be useful if used carefully (we will
see how later on).
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Less Näıve Solutions

Methods we will look at . . .

Greedy algorithms

(heuristics)

Branch and bound

(enumeration with pruning)

General purpose heuristics

(genetic algorithms)

And we’ll look at some toolkits that help.
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Takeaways

Lot’s of real problems have integer variables

Integer programming is much more than just linear programming with
integer variables.

Even if variables are continuous, other parts of the problem need
extra integer variables

I disjunctive constraints (either or)
I discontinuous objectives

Näıve solutions to ILPs aren’t a great idea
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Further reading I
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