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Section 1

Algorithm Analysis and Indeterminacy
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Strategy for counting operations

Break the program into blocks
I we can just add up the cost of each block

Look for loops
I the cost of the “stuff” inside the block is multiplied by the number of

times the loop runs

Using Big-O notation simplifies our work
I Big-O with respect to asymptotic problem size
I We only have to keep track of “biggest” parts of an algorithm
I Uniform-cost model works

F constant factors drop out, so
F we can count all operation types as O(1)

I Elementary functions are also O(1)
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Time Analysis: indeterminacy

The big problem for analysing cost is indeterminacy, i.e., sometimes the
code’s behaviour changes depending on the values

if (x > 0)

y = x + 1

else

y = very_complicated_function(x)

end

Often we don’t know what value of x to expect (that’s might be the whole
point of the program) so how should we analyse this?
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Worst case analysis

Usually look at worst case performance
I because we are conservative
I because this is often easier to calculate

In the example above, the worst case is the complicated function, so
we use its complexity

The hard cases involve things like
I a loop where the number of iterations is variable
I complicated logic and calculations that depend on inputs

e.g., Simplex

Let’s have a bit more of a look

Remember we will use Big-O notation, which makes our lives easier
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Section 2

Worst Case Analysis
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Instances

Any (interesting) algorithm can solve many instance of a given problem

e.g., Simplex can solve lots of different LPs
I any given set of objective and constraints defines an instance

Computation time depends on the particular instance

We usually parameterise instances by size
I the size of a LP is the number of variables and constraints

The worst case is the instance of a given size that takes the longest
to solve

I note this is a very specific sense of “worst”
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Example 1

Evaluating xn

Näıvely we do this with n − 1 multiplications, but that is slow

Actually we use tricks like xn = exp
(
n log x

)
Simple functions like exp(·) and log(·) are O(1) (for fixed precision)

The instance size is n

The “worst case” here doesn’t matter, because all calculations take
the same time (with respect to x and n)

So xn = O(1)
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Example 2

Evaluating a degree n polynomial

anx
n + · · · + a1x + a0

Assume we calculate it as written

The instance size is the degree n

The worst case instance: all of the coefficients ai are non-zero

In the worst case, we have to do at least n additions

As noted above xn = O(1)

So evaluating a degree n polynomial directly is O(n)
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Example 2b

Evaluating a degree n polynomial

anx
n + · · · + a1x + a0

Näıve way to evaluate is to calculate the sum as it is written

There is a better way – Horner’s algorithm((
(anx + an−1)x + an−2

)
x · · · + a1

)
x + a0

Note that this is still O(n), but it will typically be faster
I Big-O notation hides constant factors
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Example 3

if (condition)

% sequence of statements 1 which is O(n)

else

% sequence of statements 2 which is O(n^2)

end

Assume worst case, so take the worst branch

Algorithm is O(n2)
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Example 4

while (n > 0)

% make n smaller by some amount x >= 1

% steps take O(n^2) to calculate

end

“Size” is n

Assume work inside the loop takes O(n2)

The worst case is that x = 1 for all loops, so we have to go through
the loop n times, and hence the algorithm is O(n × n2) = O(n3)

We often look for “bounding” cases, i.e., worst cases where a loop is
actuated the maximum possible number of times
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Example 5

Euclid’s algorithm for Greatest Common Divisor (GCD)

function gcd(a, b) // for positive integers a,b

while a not= b

if a > b

a := a - b;

else

b := b - a;

endif

endwhile

return a;
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Euclid’s algorithm examples

step a b

start 35 21
1 14 21
2 14 7
3 7 7

step a b

start 34 21
1 13 21
2 13 8
3 5 8
4 5 3
5 2 3
6 2 1
7 1 1
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Euclids algorithm examples

Euclid’s algorithm is very old (at least 300 BC)

In the uniform-cost model each step takes constant time, so we just
have to count the number of steps

I presumes integers of fixed size

The number of steps is bounded by n = max(a, b), so algorithm looks
like O(n)

However, the worst case was discovered Émile Léger, in 1837
I Fibonacci numbers FN

I FN ≥ ϕN−1, (Golden Ration Phi)
I So N − 1 ≤ logϕ n

So algorithm is O(log n)

Analysis of this by Lamé in 1844 was first case of complexity analysis
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Example: Simplex

What is the computational complexity of Simplex?
Let’s just look at Phase II, with n variables and n constraints

Each pivot requires O(n2) operations (in the worst case)
I each element of the matrix might be multiplied and/or added

If we do k pivots, then the algorithm would be O(kn2)

But what is k? It probably depends on n and m, but how?

? k = O(nm)

? k = O(exp(nm))
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Example: Simplex

we will see an example (Klee-Minty) of a Simplex problem where k is
exponential, so the worst case behaviour of Simplex is exponential

but common cases typically have iterations k ≤ 3m

there are (guaranteed) polynomial time algorithms for solving LP (see
interior point algorithms), though these aren’t necessarily much faster
on many problem, its just their worst case is guaranteed to be better.
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Strategy

Break the program into blocks
I we can just add up the cost of each block

Look for the “biggest bits”

Look for loops
I the cost of the “stuff” inside the block is multiplied by the number of

times the loop runs

Where there are indeterminate parts, look for the worst case
I branches (conditionals) – choose worst branch
I loops – look for bounds

We can often cheat
I skip calculations for “small” bits
I there are known complexities for many common algorithms – you can

use these as blocks
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Further complexity

Other measures of complexity

Communications complexity
I e.g., how much network traffic on a parallel cluster

Memory complexity
I how much memory is needed for the algorithm

We still use techniques like Big-0 and worst case analysis

Others ways to assess complexity

Average case
I Simplex typical case is polynomial, instead of exp

Best case
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Takeaways

Strategies and examples for calculating computational complexity of
more complicated algorithms
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Further reading I
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