
Optimisation and Operations Research
Lecture 13: Complexity and the P vs NP problem

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

http:

//www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/

School of Mathematical Sciences,
University of Adelaide

August 13, 2019

http://www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/
http://www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/

Section 1

Turing machines

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 2 / 35

The Problem

Earlier analysis essentially ignored the underlying computer

Computation time depends a great deal on the computer
I e.g., can it parallelise some operations?

So we need a “universal” model computer to create formal arguments
about what is possible

Turing created one, way back when we were just inventing computing

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 3 / 35

Turing Machines

An abstract model of a computer

Turns out that all sufficiently complex computing systems are
equivalent in the sense that they can compute the same family of
functions:

I computable functions intuitively have a finite program, that completes
in a finite number of steps to the result

I almost all functions we deal with in math are computable (though
maybe not efficiently)

I there are a few that aren’t

Turing machines have a few variants, but simplest has
I a tape
I a finite state machine that can write/read from the tape

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 4 / 35

Simple Turing Machine

a tape
I a tape is an idealisation of computer memory
I imagine a strip of paper on which we can write or erase some symbols

(often binary 1s and 0s)
I the tape can be moved back and forth so that the machine can write

and read any point on the tape

a finite state machine that can write/read from each tape
I n states, plus “halt”
I transition function has inputs of current state and current tape value
I transition causes three outputs:

F can write over the current bit of the tape
F it can move the tape
F the state machine’s state can change

running the machine means setting a set of tape values, and a
starting state, and then allowing transitions until “halt” is reached

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 5 / 35

Our Turing Machine

Ours will be just a little different (but equivalent)

finite
state
machine

input tape output tape
p1p2p3p4 x1 x2 x3 x4

0 0 0 1 0 0 1 0 0 0
working tape

Its helpful to separate inputs and outputs from working memory
I input tape (with the input p – the program – on it)
I output tape (which we will write the output x on)
I a working tape
I a finite state machine that can write/read from each tape

We’ll call this a universal computer
I measure complexity by the number of state changes

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 6 / 35

Section 2

Complexity Nomenclature

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 7 / 35

Algorithm v Problem complexity

Remember that

we start with instances of a class of problem of given size n

in general think about solving using a Turing Machine

we can measure the time of an instance, and often calculate the time
of the worst case, when a particular algorithm is used to solve it

we often attribute a problem with the complexity of the best
algorithm, on the worst instance

describe complexity with big-O notation, e.g., O(n2)

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 8 / 35

General problem descriptions

Common types of (general) problem

decision : does a solution exist?

search : find a solution.

counting : how many solutions exist?

optimisation : find the best solution.

The distinction is arbitrary: e.g., we can solve a decision problem by
searching for a solution, but its helpful in thinking about complexity.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 9 / 35

General problem descriptions: example 1

Example

decision : is n prime?

search : factorise n (if it is possible).

counting : how many possible factors does n have?

optimisation : find the factorisation which has the largest sum of factors.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 10 / 35

General problem descriptions: example 2

Example

Given a set of numbers, e.g., S = {−7,−3,−2, 5, 8}

decision : does some subset of S add to give zero? Yes.

search : find a subset that adds to give zero: {−3,−2, 5}
counting : how many subsets of S add to give zero? 1?

optimisation : find the subset that adds to zero with the least members.
{−3,−2, 5}

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 11 / 35

General problem descriptions: example 3 (TSP)

Example

TSP (Travelling Sale-person’s Problem) variants:

decision : is there a path visiting each city with distance less than k?

search : find a path visiting each city with distance less than k .

counting : how many paths have distance less than k?

optimisation : find the shortest path visiting all cities.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 12 / 35

General problem descriptions: example 4 (LP)

Example

Linear programming problems:

decision : is Ax ≤ b feasible?
Simplex Phase I, or is there something easier?

search : find a feasible solution to Ax ≤ b. Simplex Phase I

counting : how many vertices does the region defined by Ax ≤ b have?
This could be hard?

optimisation : maximise cTx over Ax ≤ b. Simplex

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 13 / 35

Decision problems

Definition (Decision problem)

A decision problem is a problem whose answer is YES or NO.

Can be viewed as dividing problem instances in member and
non-member instances

Avoids issues of the output size of the problem

The alternatives above could be described as function problems where
a more complex result is the output. It seems a richer class of
problem, but can always be recast as decision problems, e.g.,

a× b

can be recast as a set of problems “is a× b = c?”

NB: often, we solve decision problems by searching for a solution!
Think of the solution as a check.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 14 / 35

Tractability

Problems that can be solved in theory (e.g., given large but finite time),
but which in practice take too long for their solutions to be useful, are
known as intractable problems

We can’t trivially distinguish the intractable and tractable problems, so we
often divide them by their asymptotic performance into

polynomial means there is an algorithm which takes time poly(n) for
some polynomial p(n) on inputs of length n

remember this is the worst case performance
write it as O(nk) for some fixed k
polynomial time algorithms are often treated as
equivalent to tractable

exponential means it takes time at least 2poly(n)

grows faster than any polynomial
exponential algorithms are assumed to be intractable

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 15 / 35

Section 3

P v NP

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 16 / 35

Deterministic and Non-Deterministic Turing Machines

A deterministic Turing machine is just what we described earlier
I given a particular input, its output is “deterministic”
I people have built them (almost)
I standard computers are analogous

a non-deterministitc Turing machine: it can have a set of rules that
give more than one action for a given situation.

I in a given state, input a given symbol, perform both A and B
I can think of it as

F getting to try both possibilities
F being able to guess the correct branch

Non-deterministic Turing machines don’t exist, but are useful for
describing algorithm complexity.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 17 / 35

P and NP

Definition (P)

P is the set of decision problems that are Polynomial time, i.e., they can
be solved by a deterministic Turing machine in polynomial time.

Definition (NP)

NP is the set of decision problems that are Non-deterministic Polynomial
time, i.e., they can be solved by a non-deterministic Turing machine in
polynomial time.

NP does NOT mean Non-Polynomial

It actually includes all polynomial-time decision problems, i.e.,
P ⊂ NP

We don’t know if it has anything else in it
I Is P = NP?
I Win $1, 000, 000 if you can answer this

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 18 / 35

http://www.claymath.org/millennium-problems/p-vs-np-problem

Euler Diagrams

P

NP

P ≠ NP

com
plexity

P = NP

P = NP

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 19 / 35

NP = Non-deterministic Polynomial time

Ways to think about NP

NP problems have an efficient (polynomial time) verifier
I computing the decision might be hard
I but checking a YES decision is easy
I e.g., is n prime?

F factorization might require checking all possible factors
F given two factors p, q its easy to check p × q = n

assumes the YES result comes with a “proof certificate” (often a
solution) which can be checked.

They can be solved in polynomial time by a non-deterministic Turing
machine using the following approach

1 Guess a solution
2 Check it

A non-deterministic Turing machine can make the right guess, so
compute time is just the time to check the solution.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 20 / 35

NP examples

All P problems

Graph isomorphism problem

integer factorisation

SAT

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 21 / 35

SAT
A very general class of decision problems is SAT

Definition (SAT)

A (Boolean) satisfiability (SAT) problem has n Boolean variables
x1, . . . , xn and a Boolean formula φ involving the variables. The question
is whether there is an assignment (of TRUE and FALSE) to the variables,
such that φ(x1, . . . , xn) = TRUE , i.e., we satisfy the formula.

Example

One variable x1 and Boolean formula

φ(x) = x1 ∧ ¬x1

where ∧ = AND and ¬ = NOT, is not satisfiable because

TRUE AND NOT TRUE = FALSE

FALSE AND NOT FALSE = FALSE

so there is no value of x1 that leads to φ(x1) = TRUE .
Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 22 / 35

SAT

Example

Three variables x1, x2 and x3 and Boolean formula

φ(x) = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ ¬x1

where

∨ = OR

∧ = AND

¬ = NOT

is satisfied by x1 = FALSE , x2 = FALSE , and x3 arbitrarily.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 23 / 35

We think some problems in NP aren’t in P

We certainly know some problems in NP for which we have no
polynomial-time algorithm at present

I e.g., SAT
I so we think these might be harder than P
I a problem is called NP-hard if it is at least as hard as the hardest

problem in NP
I we’ll define formally in a moment

If P 6= NP then NP-hard problems cannot be solved in polynomial
time.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 24 / 35

We think some problems in NP aren’t in P

If P = NP, then the world would be a profoundly differ-
ent place than we usually assume it to be. There would be
no special value in “creative leaps,” no fundamental gap be-
tween solving a problem and recognizing the solution once it’s
found. Everyone who could appreciate a symphony would be
Mozart; everyone who could follow a step-by-step argument
would be Gauss; everyone who could recognize a good invest-
ment strategy would be Warren Buffett. Its possible to put
the point in Darwinian terms: if this is the sort of universe
we inhabited, why wouldn’t we already have evolved to take
advantage of it?

Scott Aaronson

http://www.scottaaronson.com/blog/?p=122

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 25 / 35

http://www.scottaaronson.com/blog/?p=122

NP-hard definitions

Definition

A problem A can be reduced to B if we could solve A using the algorithm
that solves B as a subroutine.

If we have a polynomial time reduction (that is one that can be done
in polynomial time, excluding the time in the subroutine) then we can
efficiently convert one problem into the other.

So A is no more difficult than B.

Definition (NP-hard)

A problem H is NP-hard if every problem L in NP can be reduced in
polynomial time to H.

So H is at least as hard as any L in NP.

Note that an NP-hard problem isn’t necessarily in NP!

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 26 / 35

Euler Diagrams

NP-hard

P

NP

P ≠ NP

com
plexity

NP-hard

P = NP

P = NP

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 27 / 35

NP-complete

Definition (NP-complete)

A problem that is in NP, and in NP-hard is called NP-complete.

A problem p in NP is NP-complete if every other problem in NP can
be reduced to p in polynomial time.

A decision problem is NP-complete if it is in NP, and every problem in
NP is reducible to it.

Cook’s theorem: the Boolean satisfiability problem (SAT) is
NP-complete

I so many proofs of NP-completeness show SAT can be reduced to the
problem

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 28 / 35

Euler Diagrams

NP-hard

P

NP

NP-complete

P ≠ NP

com
plexity

NP-hard

P = NP
= NP-complete

P = NP

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 29 / 35

Example NP-complete problems

SAT (and many variants)

Binary linear programming

Set covering

Hamiltonian circuit

Graph colouring

Bin-packing and Knapsack

TSP problem

Many others

NB: decision versions of the above where its not obvious.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 30 / 35

Other important chunks

If a decision problem is NP-complete, then its optimisation version is
NP-hard

Weirdest case I know
I The graph isomophism problem

F is graph G1 isomophic to G2

F its in NP
F its suspected to be neither in P or NP-complete
F very recently a quasi-polynomial time algorithm was found

call these NPI = NP-intermediate
I in NP, but not in P or NP-complete

There are NP-hard problems that are not NP-complete
I e.g., the halting problem

F given a program and its input, will it run forever?
F its undecidable (so not in NP)
F SAT can be reduced to the halting problem by writing Turing machine

program that tries all values

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 31 / 35

Misconceptions

NP-complete problems are not the “hardest”
I they are in NP – some problems aren’t!

F some problems can’t even be verified in polynomial time

I decision problems in Presburger arithmetic can take O(22n), i.e., double
exponential time

Not all instances of NP-complete problems are hard
I many (even most) instances of some NP-complete problems can be

solved in polynomial time
I complexity refers to worst case

Problems with an exponential number of possibilities are not all
NP-complete

I counter-example: shortest paths is solvable in O(n log n) time

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 32 / 35

Takeaways

We talked about complexity classes
I P
I NP
I NP-complete
I NP-hard

we don’t know if P = NP

At the moment, we can’t solve an NP-complete problem in
guaranteed polynomial time

I integer programming is, in general, NP-complete
F some of these problems are currently intractable
F but some restricted subsets of integer programming problems might

have polynomial time algorithms
F others might have good approximations

I in general, though, we are going to have to be a bit more clever when
tackling integer programming problems

F there is no “one-size-fits-all” like the Simplex for LPs

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 33 / 35

Something to watch

Watch https:

//www.youtube.com/watch?v=YX40hbAHx3s&feature=youtu.be

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 34 / 35

https://www.youtube.com/watch?v=YX40hbAHx3s&feature=youtu.be
https://www.youtube.com/watch?v=YX40hbAHx3s&feature=youtu.be

Further reading I

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 35 / 35

	Turing machines
	Complexity Nomenclature
	P v NP

