
Optimisation and Operations Research
Lecture 15: The Greedy Heuristic

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

http:

//www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/

School of Mathematical Sciences,
University of Adelaide

September 16, 2019

http://www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/
http://www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/

Section 1

Heuristics

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 2 / 31

Algorithms and heuristics

So far in this course, we have used algorithms:

e.g., Simplex

An algorithm precisely specifies a recipe for a computation.

A heuristic is a rule of thumb or an educated guess

in our context they are rules that might lead to good solutions

often based on simple intuition

sometimes easier to code up

often used when there isn’t a fast-enough algorithm known

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 3 / 31

Algorithms and heuristics

A heuristic usually leads to an “algorithm”

In optimisation we often make the distinction that

an algorithm is guaranteed to find the optimal solution

a heuristic makes no guarantees
I though we hope it will find a good solution
I and it may find the optimal solution

We might even talk about a meta-heuristic, which is a general idea that
can be converted into a heuristic for a particular problem, which leads to
an “algorithm”, sometimes an exact one, and other times not.

greedy meta-heuristic
⇒ Dijskstra’s algorithm on shortest paths problem

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 4 / 31

Section 2

The Greedy Heuristic

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 5 / 31

The Greedy Heuristic

Iterate

Create a set of feasible candidates/choices
I local “move” from current solution
I partial solutions (don’t need to know all of the variables at once)

Rate candidates by value (in terms of the objective)

Choose the best

Stop when you run out of choices

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 6 / 31

The Greedy Heuristic

Intuition
I often an optimal solution has a few important pieces, and the rest are

“noise”
I greedy gets the important bits first
I sometimes this is even guaranteed to find the optimal solution

Bad bits
I locally good decisions can be globally bad
I method is short-sighted
I go down a dead end and there isn’t any way to go back

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 7 / 31

Examples

Knapsack problem

Coin Changing

TSP

Huffman coding

Shortest paths

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 8 / 31

Knapsack problem [KV00]

Example (Knapsack problem)

A hiker can choose from the following items when packing a knapsack:

Item
1

chocolate
2

raisins
3

camera
4

jumper
5

drink

wi (kg) 0.5 0.4 0.8 1.6 0.6

vi (value) 2.75 2.5 1 5 3.0

vi/wi 5.5 6.25 1.25 3.125 5

However, the hiker cannot carry more than 2.5 kg all together.

Objective: choose the number of each item to pack in order to maximise
the total value of the goods packed, without violating the mass constraint.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 9 / 31

Knapsack problem in general

Integral knapsack problem

we have a knapsack (backpack) which can take weight W

we want to fit as much useful stuff into it as possible
I maximize the value of the items contained in the knapsack

each item i
I has a weight wi

I has a value vi (we want to maximise total value)

we have one indicator variable, zi , for each item
I if we include the item, we say zi = 1
I otherwise zi = 0

summarizing

max

{∑
i

vizi

∣∣∣∑
i

wizi ≤W , zi = 0 or 1

}

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 10 / 31

Knapsack problem computational complexity

The knapsack decision problem is NP-complete
I the decision problem is:

“Can we find an allocation with value at least V and weight
less than W ?”

The knapsack optimisation problem (described above) is NP-hard
I it is at least as hard as the decision problem
I there are no known polynomial-time checks for optimality

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 11 / 31

Greedy knapsack heuristic (due to Dantzig)

1 Calculate the value to weight ratio vi/wi

2 Sort the items in decreasing order
3 For i = 1..n

1 if there is room for item i , add it

Sorting is O(n log n), so this component dominates performance.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 12 / 31

Knapsack problem variants

Very common (in different forms)

fractional (allows fractions of items)

unbounded (multi-items, i.e., zi ∈ Z+)

multiple constraints: e.g., volume and weight

multiple knapsacks ⇒ Bin-packing problem

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 13 / 31

Coin Changing Problem

Problem: given possible coins and banknotes pay an amount $z using the
smallest number of coins and banknotes.

Example

Australian currency:
banknotes $100, $50, $20, $10, $5;
coins $2, $1, 50c, 20c, 10c, 5c.

So $105.50 can be paid (minimally) using $100 + $5 + 50c

General problem: given coins and banknotes of value ci for i = 1, . . . , n,
then solve

min

{
n∑

i=1

xi

∣∣∣ n∑
i=1

xici = z , xi ∈ Z+

}
Where, xi is the number of value ci coins/banknotes.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 14 / 31

Coin Changing Greedy Solution

Input: z , and (decreasing) coin values
c = (100, 50, 20, 10, 5, 2, 1, 0.5, 0.2, 0.1, 0.05)

Output: x∗ ∈ Zn

1 i ← 1
2 xi ← 0
3 while z > 0 do
4 if ci ≤ z then
5 xi ← xi + 1
6 z ← z − ci
7 else
8 i ← i + 1
9 xi ← 0

10 end

11 end

Algorithm 1: Greedy Coin Change

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 15 / 31

Coin Changing Greedy Solution

Example

Given currency c = (4, 3, 1) and z = 6

1 i = 1, ci = 4
1 x1 = 1, z = 2

2 i = 2, ci = 3
1 x2 = 0, z = 2

3 i = 3, ci = 1
1 x3 = 1, z = 1
2 x3 = 2, z = 0

So greedy gives x = (1, 0, 2)
Actual optimal solution is x = (0, 2, 0)

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 16 / 31

Coin Changing Greedy Solution

There are smarter ways to do this
I add all of a particular coin you can in one go

F complexity is O(n), where n is number of coins

I but I like the recursive nature of the above

For canonical coins systems, greedy is optimal

Definition (Canonical Coin System)

A coin system is canonical if the greedy solution is always optimal.

I US coins are canonical
I Conditions to check if a system is canonical are involved
I We could treat design of coin system as an optimisation in itself

Frobenius coin problem is find the largest amount that cannot be
obtained using only specified coins.

I see also postage stamp problem and McNugget problem

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 17 / 31

Travelling salesperson problem (TSP)

Given a set of towns, i = 1, . . . , n, and distances between the towns

D = [dij] =

1

2
...

i
...

n

1 2 · · · j · · · n

...

...

...

· · · · · · · · · dij

Objective: construct a directed cycle of minimum total distance going
through each town exactly once.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 18 / 31

TSP Formulation

The decision is, basically, which links do we choose to use in the tour.

Letting xij =

{
1 if link (i , j) is chosen

0 if link (i , j) is not chosen
, then we have

(ILP) min d =
n∑

i=1

n∑
j=1

dijxij

s.t.

n∑
j=1

xij = 1, ∀i = 1, . . . , n (only one link from i)

n∑
i=1

xij = 1, ∀j = 1, . . . , n (only one link to j)

∑
i∈S

∑
j∈Sc

xij

 ≥ 1, ∀S ⊂ N (connectedness)

xij = 0 or 1 for all i , j

This is an example of a classic 0–1 (Binary) Integer Linear Program.
The equations are linear, but the variables are integer (here binary).

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 19 / 31

TSP Alt Formulation

The ILP describes links by n2 binary variables xij
We can write the same information much more concisely by
describing the tour as a permutation of the integers 1, . . . , n.

I a permutation is just lists the cities in some order
I it’s hard to write this formulation in ILP, but it can be easier to work

with when programming
I we often see this

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 20 / 31

TSP Greedy Heuristic

Start at an arbitrary node (usually city 1)

Choose the nearest town i1 to city 1 as the second town

Choose the nearest town i2 to city i1 as the third town

And so on ...

Greedy doesn’t work very well for the TSP, but it can provide an initial
solution, which we can then improve.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 21 / 31

Coding

We have a “text” made up of a series of messages, or symbols

a, b, c , d

We know the PMF (prob. mass function) of the messages

P(a),P(b),P(c),P(d)

We want to have a binary code for each symbol, e.g.,

a ↔ 00

b ↔ 01

c ↔ 10

d ↔ 11

We want to minimise the average number of bits
I in the example, the average is 2
I can we do better?

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 22 / 31

Coding
Imagine

P(a) = 1/2

P(b) = 1/4

P(c) = 1/8

P(d) = 1/8

And we use the code

a ↔ 0

b ↔ 10

c ↔ 110

d ↔ 111

Average message length

bits per word = 1
1

2
+ 2

1

4
+ 3

1

8
+ 3

1

8
=

7

4
< 2

How should we minimise code length in general?
Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 23 / 31

Formalised coding problem

Objective: minimise the average code length

L = E
[
`
]

=
m∑

k=1

`kpk

where

`k = length of kth code word

pk = probability of kth code work

Subject to the Kraft inequality (won’t go into this here, but it’s needed to
make it possible to decode)

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 24 / 31

Huffman coding

1 We are building a tree

2 Start with each symbol in Ω as a leaf of the tree.
3 Repeat the following rule

1 merge the two current nodes with the lowest probabilities to get a new
node of the tree

4 The root is when we get a probability 1.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 25 / 31

Huffman coding example 1

X Probability

a 0.25

0.25 0.25 0.55 1.0

b 0.25

0.25 0.45 0.45

c 0.2

0.2

d 0.15

0.3 0.3

e 0.15

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 26 / 31

Huffman coding example 1

X Probability

a 0.25 0.25

0.25 0.55 1.0

b 0.25 0.25

0.45 0.45

c 0.2 0.2

d 0.15 0.3

0.3

e 0.15

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 26 / 31

Huffman coding example 1

X Probability

a 0.25 0.25 0.25

0.55 1.0

b 0.25 0.25 0.45

0.45

c 0.2 0.2

d 0.15 0.3 0.3

e 0.15

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 26 / 31

Huffman coding example 1

X Probability

a 0.25 0.25 0.25 0.55

1.0

b 0.25 0.25 0.45 0.45

c 0.2 0.2

d 0.15 0.3 0.3

e 0.15

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 26 / 31

Huffman coding example 1

X Probability

a 0.25 0.25 0.25 0.55 1.0

b 0.25 0.25 0.45 0.45

c 0.2 0.2

d 0.15 0.3 0.3

e 0.15

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 26 / 31

Huffman coding example 1

1

root

1

01

0

0

0

1

01
10
11

000
001

Read the codes from the root to the end point.

Assign 0 to the branch with higher probability at each node.
I this choice is arbitrary, but will mean we get consistent results

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 27 / 31

Huffman coding example 1

X Probability Codeword

a 0.25 01

b 0.25 10

c 0.2 11

d 0.15 000

e 0.15 001

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 28 / 31

Coding and Information Theory

Theorem

Huffman coding is optimal (in the sense that the expected length of its
codewords is at least as good as any other code).

Huffman coding is not so obviously greedy
I we group the two smallest probabilities
I roughly it is trying to grab as much entropy as it can each step

There’s a lot more to this topic
I information theory
I unique decodability

But it’s another example of a good greedy algorithm
I and it’s a real example (Huffman like codes are really used in many,

many places)

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 29 / 31

Takeaways

Heuristics are used to construct algorithms to attack difficult
problems

I not guaranteed to find optimal solution
I but can often find good solutions to hard problems

Greedy heuristic is one of the most common
I very simple and easy to implement
I works well for some problems

F when optimal solutions are sparse
F when optimal solutions are built up from optimal solutions to

subproblems

I works badly for others, but still might be used to construct an initial
solution that we can build on

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 30 / 31

Further reading I

Bernhard Korte and Jens Vygen, Combinatorial optimization, Springer, 2000.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII September 16, 2019 31 / 31

	Heuristics
	The Greedy Heuristic

