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Graph terminology

A directed graph is a tree if it is connected and acyclic.

A directed graph (N ′, L′) is a subgraph of (N, L) if N ′ ⊆ N and
L′ ⊂ L.

A subgraph (N ′, L′) is a spanning tree if it is a tree and N ′ = N.
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Graph Terminology

Definition (A Path)

A path in a directed network G (N, L) (of node set N and link set L) is a
list of nodes,i1, i2, i3...ir−1, ir , where

(i) ij ∈ N for all j = 1...r

(ii) for each successive pair of nodes, (ik , ik+1) ∈ L, and

(iii) with no repetition of nodes i.e ik 6= ij when k 6= j .

Definition (A cycle)

A cycle in a directed network G (N, L) is a list of nodes,
i1, i2, i3...ir−1, ir , i1, where i1, i2, i3...ir−1, ir is a path and (ir , i1) ∈ L
(i.e., the link from the last node of a path to the first is included).
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Graph Terminology

Example

Consider a path from node 1 to node 7

1, 2, 4, 7,
is one path,
while another is
1, 3, 2, 4, 5, 6, 7.

Note that 1, 2, 4, 6, 7
is not a path,
because (4, 6) 6∈ L.

A (directed) cycle is
4, 5, 6, 4.
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All Paths

Origin-Destination (O-D) pair (p, q) ∈ N × N

Let K be the set of all O-D pairs, with K = {[p, q] : p, q ∈ N}.
The set of paths joining an O-D pair (p, q) is denoted Ppq.

The set of all paths in G (N, L) is denoted P.

P = ∪[p,q]∈KPpq

There can be exponentially many possible paths in a network
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Network Paths
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Network Paths
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Network Paths

Path 1−2−6−3−5

2

6

1

3

4

5

Paths P15: 1-2-4-5, 1-2-6-3-5

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 6 / 28



Network Paths

Path 1−2−6−5

2

6

1

3

4

5

Paths P15: 1-2-4-5, 1-2-6-3-5, 1-2-6-5

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 6 / 28



Network Paths
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Network Paths
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Section 1

Shortest Paths
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Logical vs. Physical Network

Imagine a physical network
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Logical vs. Physical Network

But a logical network that looks like
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Logical vs. Physical Network

And potential pairs of network locations that want to communicate
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Mapping the logical to the physical

We need to map from one layer to another

Physical
layer 1

Network
layer 3

Link
layer 2

optical fiber

virtual ciruits

WDM cross connects

switches

routers
packets

That is, the logical links must be routed across physical links.
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Routing

We need a method to map packet routes to links

called a routing protocol

several types exist

we consider here shortest path protocols
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Shortest paths

We have a problem of working out what path packets should take
from origin to destination

Often, links in networks have lengths associated with them
I shortest paths would get packets to their destinations fastest
I shortest paths also use the least resources
I shortest paths come up in lots of other applications

We’ll look an algorithm (Dijkstra’s) for computing shortest paths
I it’s a greedy algorithm
I but it guarantees to find the optimal path
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Shortest path problem assumptions

For a network G (N, L),
1 The length of link (i , j) is cij ≥ 0

I some shortest path algorithms can work with negative distances, but
we then need to assume there are no negative cycles

2 There exists a path from s to all other i ∈ N.
I if not, add a dummy link from s to i with very large cost M

3 What problem?
I APSP = All Pairs Shortest Paths
I SSSP = Single Source Shortest Paths ⇐ we’ll start with this

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 14 / 28



Section 2

Dijkstra’s algorithm
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Routing

in essence, routing maps
I end-to-end traffic from p to q, i.e., tpq
I to end-to-end paths in Ppq

I to links in E

there are very many paths
I can’t search them all
I have to be clever about choice of paths

can use multiple paths
I load-balancing — spreads load over paths
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Dijkstra’s algorithm

fast method to find shortest paths is Dijkstra’s algorithm [Dij59]
I Edsger Dijkstra (1930-2002)

F Dutch computer scientist
F Turing prize winner 1972.
F “Goto Statement Considered Harmful” paper

find distance of all nodes from one start point

works by finding paths in order of shortest first
I longer paths are built up of shorter paths
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Dijkstra’s algorithm

Input

graph (N,E )

link weights αe , define link distances

dij =


0 if i = j
αe where (i , j) = e ∈ E
∞ where (i , j) = e 6∈ E

a start node, WLOG assume it is node 1

Output

distances Dj of each node j ∈ N from start node 1.

a predecessor node for each node (gives path)
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Dijkstra’s algorithm

Let S be the set of labelled nodes.

Initialise: S = {1},
D1 = 0,
Dj = d1j , ∀ j 6∈ S , i.e., j 6= 1.

Step 1: Find the next closest node
Find i 6∈ S such that Di = min{Dj : j 6∈ S}
Set S = S ∪ {i}.
If S = N, stop

Step 2: Find new distances
For all j 6∈ S , set
Dj = min{Dj ,Di + dij}
Goto Step 1.
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example

0

3

6 4

2
1

1

6

5

3

6

S={1,3} D=(0,6,3,  ,  )

Step 1

1

2

5

44

3

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 20 / 28



Dijkstra Example

changed
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example
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Dijkstra Example
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Dijkstra Result
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Dijkstra intuition

build a (Shortest-Path First) SPF tree

let it grow

grow by adding shortest paths onto it

solution must look like a tree
I to get paths, we only need to keep track of predecessors, e.g., previous

example
node predecessor
1 -
2 3
3 1
4 3
6 2

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 22 / 28



Dijkstra issues

Dijkstra’s algorithm solves single-source all-destinations problem

easily extended to a directed graph
I can only join up in the direction of a link

link-distances (weights) must be non-negative
I there are other algorithms to deal with negative weights
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Dijkstra complexity

Instance size given by number of nodes |N| and edges |E | in the graph

Simple implementation complexity O(|N|2)

Cisco’s implementation of Dijkstra tested in [SG01]

comp.time = 2.53N2 − 12.5N + 1200 microseconds

Complexity (assuming smart data structures, i.e., Fibonacci heap) is
O(|E |+ |N| log |N|),

I |E | = number of edges
I |N| = number of nodes

To compute paths for all pairs, we can perform Dijkstra for each
starting point, with complexity
O(|N||E |+ |N|2 log |N|),

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 24 / 28



Dijkstra complexity
Empirical Cisco 7500 and 12000 (GSR) computation times for
Dijkstra [SG01]
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Sketch of proof of Dijkstra

Theorem

Dijkstra’s algorithm solves the single-source shortest-paths problem in
networks that have nonnegative weights.

Proof: Call the source node s the root, then we need to show that the paths from s to
each node x corresponds to a shortest path in the graph from s to x . Note that this set
of paths forms a tree out of a subset of edges of the graph.
The proof uses induction. We assume that the subtree formed at some point along the
algorithm has the property (of shortest paths). Clearly the starting point satisfies this
assumption, so we need only prove that adding a new node x adds a shortest path to
that node. All other paths to x must begin with a path from the current subtree
(because these are shortest paths) followed by an edge to a node not on the tree. By
construction, all such paths are longer than the one from s to x that is produced by
Dijkstra.
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Takeaways

Shortest paths
I common optimisation problem
I Dijkstra is a good solution
I but not the only one: there are better approaches

F some deal with more general cases
F some are distributed
F some are slightly faster

Greed is good
I greedy algorithms can be optimal
I there are lots of similar algorithms

F e.g., Prim’s algorithm for finding minimum spanning trees
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Further reading I

E.W. Dijkstra, A note in two problems in connexion with graphs, Numerische
Mathematik 1 (1959), 269–271.

Aman Shaikh and Albert Greenberg, Experience in black-box OSPF measurement,
Proc. ACM SIGCOMM Internet Measurement Workshop, 2001, pp. 113–125.
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