
Optimisation and Operations Research
Lecture 17: Genetic Algorithms and Evolutionary Computing

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

http:

//www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/

School of Mathematical Sciences,
University of Adelaide

August 13, 2019

http://www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/
http://www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/


Section 1

Randomised Algorithms

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 2 / 38



NP hard, non-convex problems

Integer Linear Programs
I NP-hard: no known deterministic polynomial time algorithm
I non-convex: local minimum isn’t necessarily a global minimum

Leads to heuristic approaches, e.g., Greedy
I think of as searching “downhill”
I it can easily be caught in a local minimum

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 3 / 38



Local Minima
A graphical motivation with many non-global local minima and 1 global
minimum at x = y = 0. (a non-linear function called Rastrigin’s function)

f (x , y) = 20 + x2 − 10 cos (2π x) + y2 − 10 cos (2π y).

−3

−2

−1

0

1

2

3

−3
−2

−1
0

1
2

3

0

20

40

60

80

100

120

Global minimum here

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 4 / 38



Random search methods

Introduce a stochastic element
I don’t always take the “best” next step
I sometimes even allow a “bad” step
I allows you to backtrack out of local minima

The algorithm can’t be completely random
I it’s still a guided search

There are many approaches, often motivated by nature
I Ants
I Simulated Annealing
I Genetic Algorithms

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 5 / 38



Section 2

Genetic Algorithms and Evolutionary Computing

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 6 / 38



Genetic algorithms

A set of randomized algorithms which derive their behavior from a
metaphor of the processes of evolution in nature.

inspired by Darwin’s theory of evolution
I survival of the fittest

pioneered by John Holland in the 60s (see [Hol75]).

lots of applications, e.g., [Gre85, Sch89]

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 7 / 38



Genetic algorithms’ links
More information (at various levels) on GAs can be obtained from
http://cs.felk.cvut.cz/~xobitko/ga/

http://www.scs.carleton.ca/~csgrads/resources/gaal.html

http://www.rennard.org/alife/english/gavintrgb.html

http://www.cs.cmu.edu/Groups/AI/html/faqs/ai/genetic/top.html

http://www.aaai.org/AITopics/html/genalg.html

http://www.genetic-programming.com/published/

scientificamerican1096.html

http://www.trnmag.com/Stories/2003/060403/Artificial_beings_

evolve_realistically_060403.html

http://www.discover.com/issues/aug-03/departments/feattech/

Matlab code for GAs:
http://www.csc.fi/math_topics/Movies/GA.html

Designing networks with GAs
http://csdl.computer.org/comp/mags/co/1997/08/r8056abs.htm

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 8 / 38

http://cs.felk.cvut.cz/~xobitko/ga/
http://www.scs.carleton.ca/~csgrads/resources/gaal.html
http://www.rennard.org/alife/english/gavintrgb.html
http://www.cs.cmu.edu/Groups/AI/html/faqs/ai/genetic/top.html
http://www.aaai.org/AITopics/html/genalg.html
http://www.genetic-programming.com/published/scientificamerican1096.html
http://www.genetic-programming.com/published/scientificamerican1096.html
http://www.trnmag.com/Stories/2003/060403/Artificial_beings_evolve_realistically_060403.html
http://www.trnmag.com/Stories/2003/060403/Artificial_beings_evolve_realistically_060403.html
http://www.discover.com/issues/aug-03/departments/feattech/
http://www.csc.fi/math_topics/Movies/GA.html
http://csdl.computer.org/comp/mags/co/1997/08/r8056abs.htm


Advantages GAs

ease with which it can handle arbitrary kinds of constraints and
objectives

I only have to be able to compute them
I don’t even need to be able to express (as math)

makes them highly applicable where
I search space is complex or poorly understood
I expert knowledge is difficult to encode to narrow the search space
I mathematical analysis is not available
I the objective is evaluable, but not expressable

F e.g., optimising game-playing AI

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 9 / 38



Used in many areas, even in art

exemplar application: “ I don’t know much about art, but I know
what I like”

http://www.geneticart.org/

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 10 / 38

http://www.geneticart.org/


Terminology

living things are built using a plan described in our chromosomes

chromosomes are strings of DNA and serve as a model for the whole
organism

a chromosome’s DNA is grouped into blocks called genes, which have
a location called a locus

notionally, a gene codes for a particular trait
I e.g., blue, or brown eyes
I possible settings for a trait are called alleles

a complete set of genetic material (all chromosomes) is called a
genotype

expression produces a phenotype (the organism) from the genotype

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 11 / 38



Biological evolution

during reproduction, recombination occurs
I in this context we call it crossover
I genes from parents combine to give genes for offspring

mutation also happens
I it means that the elements of DNA are a little changed (randomly)

fitness of an organism is measured by success of the organism in its
reproduction

I fitter organisms reproduce more, and so propagate their genes further
I ⇒ the theory of evolution is sometimes referred to as “survival of the

fittest”
I all sorts of interesting variations here

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 12 / 38



Algorithm

1 initialization: create (randomly) an initial set of N solutions called the
population, P

2 while not finished
1 evaluate fitness: f (x) of each x ∈ P
2 generate a new population: the offspring

1 selection: select two parents from population according to their fitness
(better fitness makes them more likely to be selected)

2 crossover: With a crossover probability p cross over the parents to form
new offspring, otherwise direct copy of the parents.

3 mutation: With a mutation probability q mutate new offspring at each
locus

3 replace old population:
4 decide whether to finish

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 13 / 38



Comments

very general
I once again it’s really a meta-heuristic

every bit can be implemented in different ways

key components
I chromosome encoding
I crossover method
I mutation method
I selection method
I fitness criteria

don’t need explicit fitness function
I could be the result of winners of a game
I e.g., competition between population

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 14 / 38



Chromosome Encoding

Binary Encoding:

Chromosome A 1101100100110110

I each bit represents some characteristic
F e.g., a link is used in a particular path

I string can represent a number: using Gray codes

Permutation Encoding:

Chromosome A 1 5 3 2 6 4 7 9 8

Chromosome B 8 5 6 7 2 3 1 4 9

I each chromosome is a permutation

Value Encoding: encode values directly

Tree Encoding: used for encoding complex meaning such as a
computer program or a game strategy

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 15 / 38



Gray Code [Gra53, Gar72]

represents each number in the sequence of integers {0...2N−1} as a
binary string of length N

in an order such that adjacent integers have Gray code
representations that differ in only one bit position

marching through the integer sequence therefore requires flipping just
one bit at a time

Example N = 3 (of a binary-reflected Gray code)
The binary coding of {0...7}

numbers 0 1 2 3 4 5 6 7

binary coding 000 001 010 011 100 101 110 111
Gray coding 000 001 011 010 110 111 101 100

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 16 / 38



Crossover

operate on selected genes from parents’ chromosomes to create
offspring’s genes

simplest way is single crossover point
I randomly choose a crossover point
I copy first chromosome up to the crossover point
I copy second chromosome after the crossover point

Single crossover point example
Parent 1: 1101100100110110

Parent 2: 1111111000011110

Offspring: 1101111000011110

⇑
crossover

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 17 / 38



Crossover (continued)

There are other ways how to make crossover

multiple crossover points: more than one random crossover point is
chosen

random crossover: randomly select genes from each parent

arithmetic crossover: some arithmetic operation is performed to make
a new offspring

Different types of crossovers work better for different problems.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 18 / 38



Crossover for permutation encoding

crossover for permutation coding is a little different

Single point crossover
I one crossover point is selected
I copy from the first parent to the crossover
I then the other parent is scanned and if the number is not yet in the

offspring, it is added

Example:
Parent 1: 1 2 3 4 5 6 7 8 9

Parent 2: 4 5 3 6 8 9 7 2 1

Offspring: 1 2 3 4 5 6 8 9 7

⇑
crossover

Nice illustrations of encoding and crossover:
http://cs.felk.cvut.cz/~xobitko/ga/cromu.html

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 19 / 38

http://cs.felk.cvut.cz/~xobitko/ga/cromu.html


Mutation

intended to prevent all solutions in the population falling into a local
optimum (so crossover can’t escape)

randomly changes the offspring

binary encoding: switch a few randomly chosen bits

Bitwise mutation example
Original offspring: 1101100100110110

Mutated offspring: 1101000100111110

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 20 / 38



Mutation for permutation encoding

as with crossover, lots of possibilities
I if a group of bits encode a gene, we could mutate whole genes at each

step
I random mutation, but only allow solutions with increased fitness

for permutation encoding, need different approach
I e.g., swap a randomly chosen pair

Permutation mutation example
Original offspring: 1 2 3 4 5 6 8 9 7

Mutated offspring: 1 8 3 4 5 6 2 9 7

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 21 / 38



Selection algorithms

Roulette Wheel Selection: select randomly based on fitness function.
Probability of selection of xi is

pi =
f (xi )∑
i∈P f (xi )

Rank Selection: rank the population in order, so that
f (x(1)) ≤ f (x(2)) ≤ · · · ≤ f (x(N)). The probability of selection of x(i)
is

pi =
i∑
i∈P i

=
2i

N(N + 1)

Elitism: we automatically keep the best one from each generation.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 22 / 38



Roulette Wheel Selection

Parents are selected according to their fitness

The better the genotype is, the more chances it has to be selected

Imagine a roulette wheel where all the genotypes in the population
are placed.

The size of the section in the roulette wheel for an individual is
proportional to its fitness function

I the bigger the value is, the larger the section is

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 23 / 38



Rank Selection

Roulette Wheel Selection has problems when there are big differences
in fitness values

I one individual may completely dominate
I other parents have little change to be selected

Rank selection ranks the population from 1, . . . ,N
I selection with probability determined by ranking
I worst will have probability 2/[N(N + 1)]
I best will have probability 2N/[N(N + 1)]

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 24 / 38



Elitism

create new population by crossover and mutation
I parents don’t appear in new population
I likely that we will loose the best parent

elitism
I keep a few of the best current generation
I rest of new population constructed as above

elitism can rapidly increase the performance of GA
I prevents a loss of the current best solution
I algorithm never goes completely backwards

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 25 / 38



TSP example

We could encode by putting z(i ,j) into the chromosome
I z(i,j) ∈ {0, 1} indicates whether link (i , j) is used
I this doesn’t include the constraint that we visit each city once, in a

circuit
I we would have to include this constraint in the fitness function
I much larger search space

Easier encoding is the permutation encoding
I gives the order of the cities we visit
I automatically includes the constraint

If we have N cities, the chromosome has length N

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 26 / 38



TSP example

Many possible schemes

Crossover
I One point
I Two point
I None

Mutation
I Normal random - a few cities are chosen and exchanged
I Random, only improving - a few cities are randomly chosen and

exchanged only if they improve solution (increase fitness)
I None - no mutation

Travelling salesman problem implementation notes:
http://cs.felk.cvut.cz/~xobitko/ga/tspexample.html

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 27 / 38

http://cs.felk.cvut.cz/~xobitko/ga/tspexample.html


TSP example

crossover

chromosome=(1 2 5 3 4)

chromosome=(1 2 4 3 5)
chromosome=(1 2 4 5 3)

crossover point

m
u

ta
te

parents offspring

chromosome=(1 

mutation

5 4 2 3)

1

3

4

5

2

1

3

4

5

2 1

3

4

5

2

1

3

4

5

2

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 28 / 38



TSP example

Web applet illustration:
http://www.wiley.com/college/mat/gilbert139343/java/java09_s.html

http://sarielhp.org/research/CG/applets/tsp/TspAlg.html

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 29 / 38

http://www.wiley.com/college/mat/gilbert139343/java/java09_s.html
http://sarielhp.org/research/CG/applets/tsp/TspAlg.html


Parameters of GAs

crossover probability

mutation probability

population size

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 30 / 38



Parameters: crossover probability

If there is no crossover, offspring are exact copies of parents
I but this doesn’t mean the population is the same

If there is crossover, offspring are made from parts of both parent’s
genotype (often just one chromosome)

Crossover is made in hope that new chromosomes will contain good
parts of old chromosomes and therefore the new chromosomes will be
better. However, it is good to leave some part of old population
survive to next generation.

Crossover rate should be high generally, about 80%-95% (though it
can vary)

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 31 / 38



Parameters: mutation probability

Mutation prevents the GA from falling into local extrema

Mutation rate
I if there 0% mutation, can get stuck
I if mutation probability is 100%, whole chromosome is changed, and

search is purely random
I rate expressed in terms of individual genes, so mutation rate should be

very low
I best rates seems to be about 0.5%-1%

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 32 / 38



Parameters: population size

Too small a population there are
I few possibilities to perform crossovers
I too small part of search space covered

Too large a population
I GA slows down
I at some point hit diminishing returns

Good population size is about 20-30, however sometimes sizes 50-100
are reported as the best

I Some research also shows, that the best population size depends on the
size of chromosomes, e.g., for chromosomes with 32 bits, the
population should be higher than for chromosomes with 16 bits.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 33 / 38



Note

even though simulated annealing and genetic algorithms are called
random algorithms they are not completely random

it’s not just randomly testing solutions

we use a stochastic process

however the result is highly non-random

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 34 / 38



Pretty example movies

GAs have often been used in generating artificial life
Karl Sims

http://www.genarts.com/karl/evolved-virtual-creatures.html

http://alife.ccp14.ac.uk/ftp-mirror/alife/zooland/pub/research/ci/

Alife/karl-sims/

Example of evolved artificial life
Torsten Rei: realistic animations of stick figures, by adding “muscles”
to them, and using distance walked as fitness.

http://cognews.com/1060458741/index_html

Example of evolved artificial life
Example of evolved artificial life
Example of evolved artificial life

techniques like these used in LoTR animations

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 35 / 38

http://www.genarts.com/karl/evolved-virtual-creatures.html
http://alife.ccp14.ac.uk/ftp-mirror/alife/zooland/pub/research/ci/Alife/karl-sims/
http://alife.ccp14.ac.uk/ftp-mirror/alife/zooland/pub/research/ci/Alife/karl-sims/
http://cognews.com/1060458741/index_html


Other randomized algorithms

There are other randomized algorithms

Simulated Annealing: metaphor is cooling/crystal formation

Ants: metaphor is a colony of ants (simple agents) running simple
rules, to achieve highly organized collective behaviour (also called
Swarm Intelligence)
http://www.merlotti.com/EngHome/Computing/AntsSim/ants.htm

http://www.codeproject.com/cpp/GeneticandAntAlgorithms.asp

Tabu search: iteratively try to find solutions to the problem, but to
keep a short list of previously found solutions and to avoid ’re-finding’
those solutions in subsequent iterations. Basically, if you try a
solution, it becomes tabu in future tries [Glo90].

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 36 / 38

http://www.merlotti.com/EngHome/Computing/AntsSim/ants.htm
http://www.codeproject.com/cpp/GeneticandAntAlgorithms.asp


Take Aways

Randomisation can be helpful
I has to be controlled somehow though

Genetic algorithms
I exploit the idea of Darwinian evolution
I very general, powerful technique
I often needs some experimentation though

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 37 / 38



Further reading I

Martin Gardner, Mathematical games, Scientific American (1972), no. 2, 106.

F. Glover, Tabu search: A tutorial, Interfaces 20 (1990), no. 4, 74–94.

F. Gray, Pulse code communication, U. S. Patent 2 632 058, March 17 1953.

J. J. Grenfenstette (ed.), Proceedings of the first international conference on
genetic algorithms and their applications, Lawrence Erlbaum Associates, Hillsdale,
New Jersey, 1985.

J. H. Holland, Adaptation in natural and artificial systems, University of Michigan
Press, Ann Arbor, MI, 1975.

J. D. Schaffer (ed.), ‘proceedings of the third international conference on genetic
algorithms, Morgan Kaufmann Publishers, Inc., 1989.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 38 / 38


	Randomised Algorithms
	Genetic Algorithms and Evolutionary Computing

