Optimisation and Operations Research

Lecture 18: Branch and Bound

Matthew Roughan
matthew.roughan@adelaide.edu.au
http:
//www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/

School of Mathematical Sciences,
University of Adelaide
August 13, 2019

Section 1

Branch and Bound

Are "heuristics" the only approach?

- We are solving ILPs (Integer Linear Programs)
- So far have considered heuristics
- assumption is there is no tractable method to guarantee a solution
- but complexity analysis is about "worst case"
- also, we might have

$$
O(\exp (n))=0.0000000001 \times e^{n}
$$

- typical cases might be quite tractable
- So can we find an algorithm that works well when the problem is notionally NP-hard, but the particular instance isn't too bad?

Example ILP

Example

Consider the Knapsack Problem we considered earlier (which is a Binary Linear Program). A hiker can choose from the following items:

Item	1 chocolate	2 raisins	3 camera	4 jumper	5 drink
$w_{i}(\mathrm{~kg})$	0.5	0.4	0.8	1.6	0.6
v_{i} (value)	2.75	2.5	1	5	3.0
v_{i} / w_{i}	5.5	6.25	1.25	3.125	5

The hiker wants to maximise the value of the carried items subject to a total weight constraint of 2.5 kg , i.e., in general solve

$$
\max \left\{\sum_{i} v_{i} z_{i} \mid \sum_{i} w_{i} z_{i} \leq W, z_{i}=0 \text { or } 1\right\}
$$

where the z_{i} are binary indicator variables for each item.

Let's see what AMPL/lpsolve does

 INPUT:param n;
param w\{i in 1..n\}; \# in a .dat file
param v\{i in 1..n\};
param W;
$\operatorname{var} \mathrm{z}\{\mathrm{i}$ in 1..n\} >= 0 binary;
maximize value: sum\{i in 1..n\} v[i]*z[i];
subject to weight: sum\{i in 1..n\} w[i]*z[i] <= W;

OUTPUT:

LP_SOLVE 4.0.1.0: optimal, objective 10.25
12 simplex iterations
3 branch \& bound nodes: depth 2
SOLUTION: $\mathbf{z}=(1,1,0,1,0)^{T}$ and the value is 10.25

Branch and Bound

- lpsolve is using a method called "Branch \& Bound"
- it found the optimum solution
- it "knows" it is the correct solution
- somehow it used Simplex on the way?
- The goal of this lecture is to explain B\&B

Branching

Imagine we are solving a Binary Linear Program, e.g.,

$$
(B L P) \quad \mathbf{z}^{*}=\max \left\{\mathbf{c}^{T} \mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0, \mathbf{x} \in\{0,1\}^{n}\right\}
$$

Then we can enumerate all of the possible solutions on a tree

But there are 2^{n} solutions - we can't evaluate them all

Branching and Pruning

Imagine we are solving a Binary Linear Program, e.g.,

$$
(B L P) \quad \mathbf{z}^{*}=\max \left\{\mathbf{c}^{T} \mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0, \mathbf{x} \in\{0,1\}^{n}\right\}
$$

What if we could eliminate some sub-branches

We don't have to search the whole tree

Branching and Pruning

- Pruning reduces the search space
- hopefully to the point where we can search the entire space
- Requires
- a method to branch for general ILPs
* binary branching, even when the problem isn't binary
- a method to find "solutions" part way down a branch
- a method to determine when a branch can be pruned
* we will use bounds created by relaxations

Branching of ILPs

- Branching of Binary IPs
- pick a variable z_{i}
- left branch has $z_{i}=0$, right branch has $z_{i}=1$
- in either case z_{i} is no longer a "variable"
- we have partitioned the feasible solutions into two sets
\star divide and conquer
- Generalise the idea for Integer LPs
- partition the set into two parts
- pick a variable x_{i} and a divider c (which is NOT an integer)
- left branch is $x_{i} \leq\lfloor c\rfloor$ and right branch is $x_{i} \geq\lceil c\rceil$

$$
\begin{aligned}
& \lfloor c\rfloor=\text { the floor of } c \\
& \lceil c\rceil=\text { the ceiling of } c
\end{aligned}
$$

- x_{i} is still a variable, but on a restricted space

Example ILP

Example

Consider the Integer Linear Program

$$
\begin{aligned}
\max z= & x+y \\
\text { s.t. } \quad & -x+2 y \leq 8 \\
& 23 x+10 y \leq 138
\end{aligned}
$$

for non-negative integers x and y.
Branch on x at $c=3.5$, and we get two new LPs max $z=x+y$ such that

$$
\begin{array}{rlrlrl}
-x+2 y & \leq 8 & & -x+2 y & \leq 8 \\
23 x+10 y & \leq 138 & \text { and } & 23 x+10 y & \leq 138 \\
x & & \leq 3 & & x & \\
x
\end{array}
$$

Relaxation: a reminder

- Relaxation means defining a new problem with some of the original constraints dropped
- in this context, we drop some of the integrality constraints

Example (continued)

$$
\begin{aligned}
\max z= & x+y \\
\text { s.t. } & -x+2 y \leq 8 \\
& 23 x+10 y \leq 138 \\
& x, y \leq \mathbb{Z}^{+}
\end{aligned}
$$

Relax the integer constraints, i.e., form a new problem ($L P_{0}$) with $x, y \in \mathbb{R}^{+}$. Solving ($L P_{0}$) gives the optimal solution as

$$
z_{0}^{*}=9 \frac{1}{4} \quad \text { at } \quad\left(x_{0}^{*}, y_{0}^{*}\right)^{T}=\left(3 \frac{1}{2}, 5 \frac{3}{4}\right)^{T}
$$

Relaxation issues

- Relaxation means defining a new problem with some of the original constraints dropped
- in this context, we drop some of the integrality constraints
- Remember that in relaxing an ILP to a LP
- the solution to the LP might not be close to that of the ILP
- a feasible LP might not indicate a feasible ILP
- So relaxation by itself isn't a good approach to solve an ILP
- but we can use these to generate "partial" solutions to help search for a fully feasible solution

What can we tell from a relaxation?

For each Integer Linear Program:

$$
\text { (ILP) } \quad \mathbf{z}^{*}=\max \left\{\mathbf{c}^{T} \mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0, \mathbf{x} \in \mathbb{Z}^{n}\right\}
$$

there is an associated relaxed Linear Program:

$$
\left(L P_{0}\right) \quad \mathbf{z}_{0}^{*}=\max \left\{\mathbf{c}^{T} \mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0, \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

Now, $\left(L P_{0}\right)$ is less constrained than the (ILP) so

- If $\left(L P_{0}\right)$ is infeasible, then so is (ILP)
- If $\left(L P_{0}\right)$ is optimised by integer variables, then that solution is feasible and optimal for the (ILP)
- The optimal objective value for $\left(L P_{0}\right)$ is greater than or equal to the optimal objective for the (ILP)

$$
\mathbf{z}_{0}^{*} \geq \mathbf{z}^{*}
$$

Relaxation Gives Bounds

- The relaxed problem is a LP
- we know how to solve this, e.g., Simplex
- The relaxed LP tells us something about the ILP
- it doesn't give the solution
- it does provide an upper bound on the solution

Example (continued)

Solving ($L P_{0}$) gives the optimal solution as

$$
z_{0}^{*}=9 \frac{1}{4} \quad \text { at } \quad\left(x_{0}^{*}, y_{0}^{*}\right)^{T}=\left(3 \frac{1}{2}, 5 \frac{3}{4}\right)^{T}
$$

The ILP has solution

$$
z^{*}=8 \leq z_{0}^{*}
$$

- We can use the bounds to prune branches

Branch and Bound

- Keep a list of subproblems resulting from branching, and work on these one by one
- solve relaxed versions to get upper bounds
- sometimes we might also get an integer solution
- key: if upper bound of a subproblem is less than objective for a known integer feasible solution, then
- the subproblem cannot have a solution greater than the already known solution
- we can eliminate this solution
- we can also prune all of the tree below the solution
- it lets us do a non-exhaustive search of the subproblems
- if we get to the end, we have a proof of optimality without exhaustive search

Branch and Bound: algorithm

1. Initialization: initialize variables, in particular, start a list of subproblems, initialized with our original integer program.
2. Termination: terminate the program when we reach the optimum (i.e., the list of subproblems is empty).
3. Problem selection and relaxation: select the next problem from the list of possible subproblems, and solve a relaxation on it.
4. Fathoming and pruning: eliminate branches of the tree once we prove they cannot contain an optimal solution.
5. Branching: partition the current problem into subproblems, and add these to our list.

Branch and Bound: example

Consider the problem (from [LM01])
$\mathrm{IP}^{0}\left\{\begin{array}{lrl}\text { maximize } & 13 x_{1}+8 x_{2} & \\ \text { subject to } & x_{1}+2 x_{2} & \leq 10 \\ & 5 x_{1}+2 x_{2} & \leq 20 \\ & x_{1} \geq 0, x_{2} \geq 0 \\ & x_{1}, x_{2} \text { integer } & \\ & \end{array}\right.$

Branch and Bound: algorithm

Initialization:

- initialize the list of problems \mathcal{L}
- set initially $\mathcal{L}=\left\{\mathrm{IP}^{0}\right\}$, where IP^{0} is the initial problem
- often store/picture \mathcal{L} as a tree
- incumbent objective value $z_{i p}=-\infty$
- best (integer) solution we have found so far
- initial value is the worst possible
- initial value of upper bound on problem is $\bar{z}_{0}=\infty$
- If the upper bound of a solution $\bar{z}_{i}<z_{i p}$ then this problem IP^{i} (and its dependent tree) obviously cannot achieve the same objective value that we have already achieved elsewhere in our solutions.
- constraint set of problem IP^{0} is set to be

$$
S^{0}=\left\{\mathbf{x} \in \mathbb{Z}^{n} \mid A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0\right\}
$$

Branch and Bound: algorithm

Termination:

- If $\mathcal{L}=\phi$ then we stop
- If $z_{i p}=-\infty$ then the integer program is infeasible.
\star our search didn't find an integer feasible solution
- Otherwise, the subproblem IP^{i} which yielded the current value of $z_{i p}$ is optimal gives the optimal solution \mathbf{x}^{*}
We stop branch and bound when we have run out of subproblems (which are listed in \mathcal{L}) to solve, i.e., when \mathcal{L} is empty.

Branch and Bound: algorithm

Problem selection:

- select a problem from \mathcal{L}
- there are multiple ways to decide which problem to choose from the list
* the method used can have a big impact on speed
- once selected, delete the problem from the list

Relaxation:

- solve a relaxation of the problem
- denote the optimal solution by $\mathbf{x}^{i R}$
- denote the optimal objective value by z_{i}^{R}
$\star z_{i}^{R}=-\infty$ if no feasible solutions exist

Branch and Bound: algorithm

For the example

$$
\mathrm{IP}^{0}\left\{\begin{array}{rr}
\text { maximize } & 13 x_{1}+8 x_{2} \\
\text { subject to } & x_{1}+2 x_{2} \\
5 x_{1}+2 x_{2} & \leq 10 \\
& x_{1} \geq 0, x_{2} \geq 0 \\
& x_{1}, x_{2} \text { integer }
\end{array}\right.
$$

the relaxation is

$$
\operatorname{LP}^{0}\left\{\begin{array}{lr}
\text { maximize } & z=13 x_{1}+8 x_{2} \\
\text { subject to } & x_{1}+2 x_{2} \leq 10 \\
& 5 x_{1}+2 x_{2} \leq 20 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}\right.
$$

which has solutions $x_{1}^{0 R}=2.5$ and $x_{2}^{0 R}=3.75$ with $z_{0}^{R}=62.5$

Branch and Bound: algorithm

Fathoming :

- we say branch of the tree is fathomed if
- infeasible
- feasible solution, and $z_{i}^{R} \leq z_{i p}$
- integral feasible solution

$$
\star \text { set } z_{i p} \leftarrow \max \left\{z_{i p}, z_{i}^{R}\right\}
$$

Pruning:

- in any of the cases above, we need not investigate any more subproblems of the current problem
- subproblems have more constraints
- their z must lie under the upper bound
- Prune any subtrees with $z_{j}^{R} \leq z_{i p}$
- If we pruned Goto step 2

We don't prune the example yet (see later for complete example).

Branch and Bound: algorithm

Branching:

- also called partitioning
- want to partition the current problem into subproblems
- there are several ways to perform partitioning
- If S^{i} is the current constraint set, then we need a disjoint partition $\left\{S^{i j}\right\}_{j=1}^{k}$ of this set
- we add problems $\left\{\mathrm{IP}^{i j}\right\}_{j=1}^{k}$ to \mathcal{L}
- typically $k=2$ for binary branching
- $\mathrm{IP}^{i j}$ is just IP^{i} with its feasible region restricted to $S^{i j}$
- Goto step 2

Branch and Bound: example

Consider the problem (from [LM01])

$$
I P^{0}\left\{\begin{array}{rrl}
\text { maximize } & 13 x_{1}+8 x_{2} & \\
\text { subject to } & x_{1}+2 x_{2} & \leq 10 \\
& 5 x_{1}+2 x_{2} & \leq 20 \\
& x_{1} \geq 0, x_{2} \geq 0 & \\
& x_{1}, x_{2} \text { integer } & \\
&
\end{array}\right.
$$

with relaxation

$$
\operatorname{LP}^{0}\left\{\begin{array}{lr}
\text { maximize } & z=13 x_{1}+8 x_{2} \\
\text { subject to } & x_{1}+2 x_{2} \leq 10 \\
& 5 x_{1}+2 x_{2} \leq 20 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}\right.
$$

which has solutions $x_{1}^{0}=2.5$ and $x_{2}^{0}=3.75$ with $z_{0}^{R}=62.5$

Branch and Bound: algorithm

In the example we partition on x_{1}

- this is the "most infeasible"
- furthest from an integral value (because $x_{1}^{0}=2.5$)
- partition into two subproblems around $c=2.5$
- $I \mathrm{P}^{1}$ has $x_{1} \geq 3$
- IP^{2} has $x_{1} \leq 2$

So now $\mathcal{L}=\left\{\mathrm{IP}^{1}, \mid \mathrm{IP}^{2}\right\}$

Branch and Bound: example

$\mathcal{L}=\left\{\mid \mathrm{P}^{1}, \mathrm{IP}^{2}\right\}$

Branch and Bound: example

Problem selection (just chose in order) of IP ${ }^{1}$

The relaxation (to a LP) has solutions

- $x_{1}^{1}=3$ and $x_{2}^{1}=2.5$ with $z_{1}^{R}=59$
- we will next partition on x_{2}
- IP^{3} has $x_{2} \leq 2$
- IP^{4} has $x_{2} \geq 3$

Branch and Bound: example

$\mathcal{L}=\left\{I \mathrm{P}^{2}, I \mathrm{IP}^{3}, \mathrm{IP}^{4}\right\}$

Branch and Bound: example

Problem selection (best bound) of IP ${ }^{2}$

The relaxation (to a LP) has solutions

- $x_{1}^{2}=2$ and $x_{2}^{2}=4$ with $z_{2}^{R}=58$
- integral feasible
- So set $z_{i p}=58$
- And IP^{2} is fathomed
- no more subproblems

Branch and Bound: example

$\mathcal{L}=\left\{\mid \mathrm{P}^{3}, \mathrm{IP}^{4}\right\}$

Branch and Bound: example

Problem selection (order) of IP^{3}

The relaxation (to a LP) is infeasible

- $z_{3}^{R}=-\infty$
- IP^{3} is fathomed
- $\mathcal{L}=\left\{I P^{4}\right\}$

Branch and Bound: example

Problem selection (only possible one) of IP4

The relaxation (to a LP) has solution

- $x_{1}^{2}=3.2$ and $x_{2}^{2}=2$ with $z_{4}^{R}=57.6<z_{\text {ip }}$
- $I P^{4}$ is fathomed

Branch and Bound: example

Branch and Bound: example

Takeaways

- $\mathrm{B} \& \mathrm{~B}$ uses pruning to perform a non-exhaustive search
- we can prune branches when they are
\star infeasible
* integer feasable
\star their upper bound (on their relaxation) is less than an existing solution
- More on $\mathrm{B} \& \mathrm{~B}$ in the next lecture

Further reading I

目
Eva K. Lee and John Mitchell, Encyclopedia of optimization, ch. Branch-and-bound methods for integer programming, Kluwer Academic Publishers, 2001, http://www.rpi.edu/~mitchj/papers/leeejem.html.

