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Branch and Bound, Part II
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Branch and Bound Example

Example (Knapsack problem)

Consider the binary linear program

max z = 100x1 + 60x2 + 70x3
s.t. 52x1 + 23x2 + 35x3 ≤ 60

x1 ∈ {0, 1}
x2 ∈ {0, 1}

x3 ∈ {0, 1}

This is a knapsack problem where no more than 1 of each item is to be
packed.

NB: the relative merit of the items, is (10052 ,
60
23 ,

70
35) so a Greedy algorithm

would get the solution (1, 0, 0) with a value of z = 100.
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Branch and Bound Example

IP3

IP1

xR= (0.038, 1, 1) 
zR= 133.8 

IP2

xR= (0, 1, 1) 
zR= 130 

x1 = 0 x1 = 1 xR= (1, 0.35, 0) 
zR= 120.9 

feasible, but bounded
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Branch and Bound

Example (continued)

The relaxation of IP1 has optimal solution

z∗ = 133
44

52
at x∗ =

(
2

52
, 1, 1

)T

.

Since the first entry is non-integral, this cannot be the optimal solution of
the (ILP) and so we branch on x1 as follows

(a) (IP2) : (IP1) with x1 = 0

(b) (IP3) : (IP1) with x1 = 1.

So the list of problems is L = {IP2, IP3}
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Branch and Bound

Example (continued)

The relaxation of IP2 has optimal solution

z∗ = 130 at x∗ = (0, 1, 1)T .

This is integer, feasible, so it is a viable solution to the original ILP. Thus
we store its objective value

zip = z∗ = 130

and this branch is considered fathomed.
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Branch and Bound

Example (continued)

The relaxation of IP3 has optimal solution

z∗ = 120
20

23
at x∗ =

(
1,

8

23
, 0

)T

.

This is non-integral, but z∗ (the upper bound for IP3 obtained from the
relaxation) is already below zip = 130, so this solution is bounded, and
hence fathomed.

But it’s interesting to consider what we would have done if we tried to
solve IP3 before IP2. Then we would have branched on this case, and had
a longer list of problems to solve!

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 7 / 25



Branch and Bound on ILPs

Theorem

Assume we solve the relaxation of a subproblem IPk , and get a solution
x∗, and we choose to branch on the ith variable at c = x∗i , i.e., the branch
is segmented along the value obtained from the relaxed LP.

Then instead of adding the constraint xi ≤ bcc to the left branch, we can
equivalently add the constraint xi = bcc.

This is an advantage because it reduces the dimension of the search
space (xi is no longer free), so as we progress down the tree, the
problems become simpler to solve.

We have a similar result for the right-hand branch.
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Branch and Bound on ILPs Proof (1)

Pseudo-proof
Take integer program ILP0

z∗ = max{cTx |Ax ≤ b, x ≥ 0, x ∈ Zn}

and its relaxed linear program LP0

z∗R = max{cTx | Ax ≤ b, x ≥ 0, x ∈ Rn}

with solution
x∗R = (x01 , x

0
2 , . . . , x

0
n )T

Branch on the first variable at c = x01 , i.e., create two new subproblems
with search regions

R1 = R0 ∩
{
x1 ≤ i

}
and R2 = R0 ∩

{
x1 ≥ i + 1

}
where i = bcc.
Assume the optimal solution of LP1 is strictly less than i , and prove there
is instead an optimal solution where the solution is = to i
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Branch and Bound on ILPs Proof (2)

Suppose that the optimal solution x∗R to (LP1) has x∗1 < i .

(a) We show that there is some λ ∈ (0, 1) such that x = λx0 + (1− λ)x∗

satisfies the following:

(i) The value of x1 in x equals i ;
(ii) x is feasible for (LP0);
(iii) The z-value for x is less than or equal to the z-value for x∗.

If we establish (a), then:

(b) We can conclude that there is at least one optimal solution to (LP1)
with x1 = i .

(c) This means we can set x1 = i in (LP1), and

Similarly there is at least one optimal solution to (LP2) with x1 = i + 1,
and so we can set x1 = i + 1 in (LP2)

Then this is true for each (LPi ) by induction.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 10 / 25



Branch and Bound on ILPs Proof (3)

Pseudo-proof (cont)
Establishing (a):

x∗(0) = solution to LP0

x∗(1) = solution to LP1

and by assumptions x
∗(0)
1 > i and x

∗(1)
1 < i . Now take a point between the

two solutions
x = λx∗(0) + (1− λ)x∗(1)

where, by the Intermediate Value Theorem, there exists λ ∈ (0, 1) such
that

x1 = i

that is, we can choose an intermediate point where the first value is on the
boundary.
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Branch and Bound on ILPs Proof (picture)
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Branch and Bound on ILPs Proof (4)
We know LPs are convex, and that x∗(0), x∗(1) ∈ R0,
so we know x ∈ R0

x also satisfies x1 ≤ i , and hence x ∈ R1, as that was the only extra
constraint on R1

We added an extra constraint in going from LP0 to LP1, so the
objective function cannot increase, i.e., for all x ∈ R1

z(x) ≤ z
(
x∗(0)

)
However, we started by assuming that x∗(1) is optimal in R1, so

z(x) ≤ z
(
x∗(1)

)
The objective is linear, so for any λ

z(x) = z
(
λx∗(0) + (1− λ)x∗(1)

)
= λz

(
x∗(0)

)
+ (1− λ)z

(
x∗(1)

)
The only way the three statements can be valid is if

z(x) = z
(
x∗(1)

)
that is, if x is also optimal for LP1
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Example ILP

Example

Consider the Integer Linear Program

max z = x + y

s.t. −x + 2y ≤ 8
23x + 10y ≤ 138

x , y ∈ Z+
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Let’s see what AMPL/lpsolve does

INPUT:

# example from lecture 18

var x integer >=0;

var y integer >=0;

maximize z: x + y;

subject to c1: -x + 2*y <= 8;

subject to c2: 23*x + 10*y <= 138;

OUTPUT:

LP_SOLVE 4.0.1.0: optimal, objective 8

8 simplex iterations

9 branch & bound nodes: depth 4

SOLUTION: x = 3, y = 5, z = 8
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Example Branching

Example (continued)

Relaxed solution to the original LP is (x∗, y∗)T =
(
31
2 , 5

3
4

)T
This is not integer feasible, so we select one these (non-integer) variables,
such as x∗ = 31

2 and branch as follows

(a) x ≤ 3

(b) x ≥ 4

Note that we now have 2 regions, which are mutually exclusive. This
forced dichotomy is the “branching” part of “branch-and-bound”. Here we
have chosen x as the branching variable (and have “cut off” a strip of x
values 3 < x < 4). This helps force our solution of the (relaxed) (LP) to
be integer and hopefully towards the solution of the original (ILP).
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Example Branching

Example (continued)

After 1st branching, we have 2 (LP) problems to solve:

(LP2) max z = x + y
s.t. − x + 2y ≤ 8

23x + 10y ≤ 138
x ≤ 3

x , y ≥ 0

and
(LP3) max z = x + y
s.t. − x + 2y ≤ 8

23x + 10y ≤ 138
x ≥ 4

x , y ≥ 0
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Example B&B

IP1

xR= (3.5, 5.75) 
zR= 9.25 

IP3IP2

xR= (3, 5.5) 
zR= 8.5 

x1 ≤ 3 x1 ≥ 4 xR= (4, 4.6) 
zR= 8.6 

IP5

x1 ≤ 3
IP4

xR= (3, 5) 
zR= 8.0 

x1 ≤ 3
x2 ≤ 5 x2 ≥ 6

infeasible

IP7

x1 ≥ 4
IP6

xR= (4.26, 4) 
zR= 8.26 

x1 ≥ 4
x2 ≤ 4 x2 ≥ 5

infeasible

IP9

x1 ≥ 5
IP8

xR= (4, 4) 
zR= 8.0 

x1 = 4
x2 ≤ 4 x2 ≤ 4

feasible, but boundedinteger feasible

integer feasible

xR= (5, 2.3) 
zR= 7.3 

x1 ≥ 4 & x1 ≤ 4

x1 ≥ 4 & x1 ≥ 5
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Better Branching

Example (continued)

We still have two 2 (LP) problems to solve, but they are “tighter”

(LP2) max z = x + y
s.t. − x + 2y ≤ 8

23x + 10y ≤ 138
x = 3 note the equality

x , y ≥ 0

and

(LP3) max z = x + y
s.t. − x + 2y ≤ 8

23x + 10y ≤ 138
x = 4 note the equality

x , y ≥ 0
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Example B&B

IP1

xR= (3.5, 5.75) 
zR= 9.25 

IP3IP2

xR= (3, 5.5) 
zR= 8.5 

x1 = 3 x1 = 4 xR= (4, 4.6) 
zR= 8.6 

IP5

x1 = 3
IP4

xR= (3, 5) 
zR= 8.0 

x1 = 3
x2 = 5 x2 = 6

infeasible

IP7

x1 = 4
IP6

xR= (4, 4) 
zR= 8.0 

x1 = 4
x2 = 4 x2 = 5

infeasibleinteger feasible integer feasible

Note that now we don’t have to solve as many sub-problems as
previous case

In fact, we only need to go two steps down any branch, at worst
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Branch and Bound’s Major Problem

The order of problem selection matters!

I have just done them in the order added

could do other simple approachs: e.g., depth first or breadth first

other approaches
I Best bound rule:

We partition the subset with the lowest bound, hoping that this gives
the best chance of an optimal solution and of being able to discard
other, larger, subsets by fathoming.

I Newest bound rule:
We partition the most recently created subset, breaking ties with the
best bound rule. This has book-keeping advantages, in that we don’t
need to jump around the tree too often. It can also save some
computational effort involved in calculating bounds.

But there is no universal “best” order.
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Branch and Bound

B&B can be made even faster
I sometimes we know something specific about the problem that helps

derive better bounds
I we don’t solve each relaxation from scratch – we already have a

starting point (e.g., see sensitivity analysis when we add a constraint)

B&B is a very general algorithm
I as described above we seek the optimum
I can also be used as part of a heuristic

different strategies available for each step above
I can use heuristics inside B&B
I pre-processing of the problem can be good

no single strategy stands out as best for all problems
I but sometimes we can exploit properties of a particular problem to do

better
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Branch and Bound

More information and examples of Branch and bound can be found at
http://mat.gsia.cmu.edu/orclass/integer/integer.html

http://en.wikipedia.org/wiki/Branch_and_bound

http://mathworld.wolfram.com/BranchandBoundAlgorithm.html

An instructive paper is
http://www.rpi.edu/~mitchj/papers/leeejem.html

A list of implementations can be found at
http://www.mat.univie.ac.at/~neum/glopt/software_g.html
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Take Aways

We have a variety of approaches to attack ILPs
I heuristics

F simple to program
F very problem dependent
F often quite fast

I B&B
F more general (solves general ILPs)
F harder work to program (not too much harder)
F potentially slow for big problems

I others ...

But there is no “one size fits all” solution
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Further reading I

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 25 / 25


	Branch and Bound, Part II

