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Section 1

Generalisations of Duals
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A reflection on duals

So why do we care about the dual and not just solve the primal?

1 It is sometimes easier to solve D (and they have the same optimal
objective function value).

2 The complementary slackness theorem is very powerful/useful.

3 It is sometimes useful to consider both P and D together.

4 It helps in developing algorithms – primal algorithms, dual algorithms
and primal-dual algorithms.
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Most generalised Primal/Dual

Primal Dual

1. max z =
n∑

j=1

cjxj + z0 minw =
m∑
i=1

yibi + z0

2.
n∑

j=1

aijxj = bi yi free

3.
n∑

j=1

aijxj ≤ bi yi ≥ 0

4.
n∑

j=1

aijxj ≥ bi yi ≤ 0

5. xj ≥ 0
m∑
i=1

yiaij ≥ cj

6. xj ≤ 0
m∑
i=1

yiaij ≤ cj

7. xj free
m∑
i=1

yiaij = cj
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Generalised duals and CSRs

At optimal solutions x for (P) and y for (D), the following relationships
must hold:

(a) xj (
∑m

i=1 yiaij − cj) = 0, j = 1, . . . , n.

(b)
(
bi −

∑n
j=1 aijxj

)
yi = 0, i = 1, . . . ,m.

(a) is redundant if
m∑
i=1

yiaij = cj in (D)

(b) is redundant if
n∑

j=1

aijxj = bi in (P) (LP has equalities),

otherwise this applies because si = bi −
∑n

j=1 aijxj . Hence this CSR is
for the column corresponding to the slack variable si which has the
associated dual constraint yi ≥ 0 and therefore, siyi = 0.
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Generalised duals and CSRs

Example

Consider the following primal LP (P).

(P) max z = x1 + 2x2 + x3
2x1 + x2 ≤ 6
−x1 + x2 + 2x3 ≤ 4
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

The dual (D) is then

(D) min w = 6y1 + 4y2
2y1 − y2 ≥ 1
y1 + y2 ≥ 2

2y2 ≥ 1
y1 ≥ 0, y2 ≥ 0.
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Generalised duals and CSRs

Example ((cont))

The CSR are

(2y1 − y2 − 1)x1 = 0

(y1 + y2 − 2)x2 = 0

(2y2 − 1)x3 = 0

(6− 2x1 − x2)y1 = 0

(4 + x1 − x2 − 2x3)y2 = 0.

If we found x = (x1, x2, x3) and y = (y1, y2) which satisfied these
equations and were feasible for (P) and (D), respectively, what can we say
about x and y?
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Interpretation of the dual

Consider Our First Problem and its dual:

(P) (D)
max z = 13x1 + 12x2 + 17x3 min w = 225y1 + 117y2 + 420y3

2x1 + x2 + 2x3 ≤ 225 (labour) y1 ≥ 0
x1 + x2 + x3 ≤ 117 (metal) y2 ≥ 0
3x1 + 3x2 + 4x3 ≤ 420 (wood) y3 ≥ 0

x1 ≥ 0 (desks) 2y1 + y2 + 3y3 ≥ 13
x2 ≥ 0 (chairs) y1 + y2 + 3y3 ≥ 12
x3 ≥ 0 (bedframes) 2y1 + y2 + 4y3 ≥ 17

Economic interpretation: First, note that
y1 corresponds to a constraint about the usage of labour,
y2 to a constraint on metal, and
y3 to one on wood.
That is, each dual variable corresponds to a “cost” for using a resource.
The remaining three constraints then correspond to the costs for the
items: desks, chairs, and bedframes.
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Interpretation of the dual (cont)

Suppose a speculator wants to purchase all of the manufacturer’s
resources.

Then the speculator must determine the price she/he is willing to pay for
those resources.

Let
y1 = price paid for one unit of labour (in $)

y2 = price paid for one unit of metal (in $)

y3 = price paid for one unit of wood (in $).

The total cost of the resources is then

225y1 + 117y2 + 420y3

and obviously, the speculator wishes to minimise this and hence we have
the natural objective function in (D) above.
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Interpretation of the dual (cont)

Now consider the constraints on the speculator:

The speculator must pay the manufacturer an amount that is at least as
big as the profit that the manufacturer can make on an item if the
manufacturer is to be enticed to sell.

For example, consider the desk, where it takes 2 units of labour, 1 unit of
metal and 3 units of wood to produce 1 desk, with a profit of $13, the
speculator must be willing to pay the manufacturer enough to cover the
$13; that is, 2y1 + y2 + 3y3 ≥ 13. Similarly, we obtain constraints on chairs
and bedframes. The nonnegativity constraints are obvious in this context.

In summary, when the primal is a maximisation problem, the dual variables
are related to the value of the resources available to the decision maker.

Because of this, the dual variables are often referred to as shadow prices.
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Section 2

Primal and dual algorithms
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Primal and dual algorithms

Recall that,

primal feasibility

and dual feasibility

and complementary slackness

 =⇒ Optimality

or symbolically

Ax = b : x ≥ 0

and (yTA− cT ) ≥ 0

and (yTA− cT )x = 0

 =⇒ Optimality
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Primal and dual algorithms – 2

Primal algorithms:
These maintain primal feasibility and complementary slackness and seek
dual feasibility.

Dual algorithms:
These maintain dual feasibility and complementary slackness and seek
primal feasibility.

The dual simplex algorithm starts with and maintains a primal/dual basic
solution that is dual feasible and satisfies complementary slackness while
seeking primal feasibility.
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Dual simplex method – 1

Example (Motivating Example)

Consider the problem:

min z = 2x1 + 3x2 + 4x3
x1 + 2x2 + x3 ≥ 3

2x1 − x2 − 3x3 ≥ 4

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

We convert to a maximisation problem and introduce slack variables

max w = −2x1 − 3x2 − 4x3
x1 + 2x2 + x3 − x4 = 3

2x1 − x2 − 3x3 − x5 = 4

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0.
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Dual simplex method – 2

The associated tableau is

x1 x2 x3 x4 x5 b

1 2 1 −1 0 3

2 −1 −3 0 −1 4

2 3 4 0 0 0

It can be seen that this is not in feasible canonical form

(multiplying the first two rows by −1 results in the tableau being in
canonical form, but not feasible canonical form as the b entries are
negative).

We would therefore use Simplex Phase I to put the tableau in canonical
form, and then apply Simplex Phase II to find the optimal solution.
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Dual simplex method – 3

Multiplying the first two rows by −1 results in the tableau

x1 x2 x3 x4 x5 b

−1 −2 −1 1 0 −3

−2 1 3 0 1 −4

2 3 4 0 0 0

It can be seen that yT = (0, 0) is a dual feasible solution: That is,
yTAN − cTN = (2, 3, 4) ≥ 0 for the current basis B = {x4, x5}, but it is not
primal feasible as x4 = −3, x5 = −4.

Just as in the primal simplex method we performed G–J pivot steps to
retain primal feasibility and complementary slackness and sought dual
feasibility, we may apply similar G–J pivot steps to retain the dual
feasibility and complementary slackness and seek primal feasibility.
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Dual simplex method – 4

The steps for the dual simplex method are identical to the primal simplex
method with the exception of choosing the pivot.

In the dual simplex method we select

the upmost row with bi < 0, and

then select from the columns in that row from the set

N = {j | aij < 0} with minimum ratio
ck
aik

I the leftmost column if there is a tie.
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Dual simplex method – 5
The tableau is

x1 x2 x3 x4 x5 b

−1 −2 −1 1 0 −3

−2 1 3 0 1 −4

2 3 4 0 0 0

1
2 1 1

2 −1
2 0 3

2

−5
2 0 5

2
1
2 1 −11

2

1
2 0 5

2
3
2 0 −9

2

0 1 1 −2
5

1
5

2
5

1 0 −1 −1
5 −2

5
11
5

0 0 3 8
5

1
5 −28

5
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Dual simplex method – 6

x1 x2 x3 x4 x5 b

0 1 1 −2
5

1
5

2
5

1 0 −1 −1
5 −2

5
11
5

0 0 3 8
5

1
5 −28

5

This is the final tableau as the solution is primal feasible, from which we
can see the optimal solution is

x∗1 = 11/5, x∗2 = 2/5, x∗3 = 0 = x∗4 = x∗5 , with optimal value z∗ = −28

5

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 19 / 38



Why dual algorithms

Sometimes it’s much easier to solve a dual problem
I constraints might entangle lots of variables in the primal, but

disentangle into small subproblems in the dual
I example TCP

Sometimes we are not solving LPs and it’s harder to know when we
have an optimal solution

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 20 / 38



Section 3

Matrix View of Simplex
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Matrix algebra and LP – 1

We first need to revise some results for solutions to a system of linear
equations given by Ax = b:

1 If A is a square m ×m invertible matrix and b ∈ Rm, then

Ax = b has a unique solution given by x = A−1b.

2 If A is a non-square m × n matrix, where n > m, with no row of A
being a linear combination of any other rows (i.e., rank(A) = m),
then there are:

1 infinitely many solutions to Ax = b, and

2 infinitely many solutions to Ay = 0.
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Matrix algebra and LP – 2

It will be convenient to seperate the basic and non-basic variables, by
splitting the matrix A accordingly.

For example, given

(
a11 a12 a13
a21 a22 a23

) x1
x2
x3

 =

(
b1
b2

)

and assuming B = {x1, x2} are the basic variables, and N = {x3} the
non-basic variable, we can rewrite the equation as(

a11 a12
a21 a22

)(
x1
x2

)
+

(
a13
a23

)
x3 =

(
b1
b2

)
or

ABxB + ANxN = b.
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Matrix algebra and LP – 3

The column vector xB contains the variables in B and the column vector
xN contains the variable(s) in N, AB has the columns of A corresponding
to the variables in xB and AN has the columns of A corresponding to the
variables in xN .

If B has m elements and N has n −m (zero) elements, we set xN = 0 and
solve ABxB = b to find the basic solution xB = A−1B b, xN = 0.

We’ll also make the following assumptions:

1 The matrix A has linearly independent rows (i.e., rank(A) = m)
2 Any m ×m matrix formed from m columns of A is non-singular (i.e.,

any set of m columns from A is linearly independent)
3 All basic solutions to xB = A−1B b, xN = 0 have exactly m non-zero

components (i.e., xi 6= 0 for i ∈ B).

Remarks: It is possible to solve LPs when A does not satisfy all of these
assumptions. They are only made to simplify the theory in this section.
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Matrix algebra and LP – 4

Consider the standard equality form of an LP:

(P) max z = cTx + z0

s.t. Ax = b

x ≥ 0

where A = (aij) is an m × n matrix.

This problem is represented by the Simplex Tableau

M =

 A 0 b

−cT 1 z0

 }m rows

}1 row
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Matrix algebra and LP – 5

Suppose the Simplex Method is applied to (P), and in the optimal
solution, the set of basic variables is B = {xjk , k = 1 . . .m}.

For ease of reference, let us suppose

M =

 AB AN 0 b

−cTB −cTN 1 z0

 }m rows

}1 row

[
AB

−cTB

]
is the submatrix from the original tableau M, made up of
columns corresponding to B (the basic variables).[

AN

−cTN

]
corresponds to columns for all the remaining
(non-basic) variables.
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Matrix algebra and LP – 6

x1 x2 x3 x4 x5 z b

1 0 3
2

0 1
2

0 2

0 1 1
2

0 − 1
2

0 2

0 0 1
2

1 1
2

0 0

0 0 3 0 2 1 6

With B = {x1, x2, x4} and N = {x3, x5} , we re-arrange to the form

x1 x2 x4 x3 x5 z b

1 0 0 3
2

1
2

0 2

0 1 0 1
2

− 1
2

0 2

0 0 1 1
2

1
2

0 0

0 0 0 3 2 1 6
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Matrix algebra and LP – 7

So without loss of generality, we can assume that M is partitioned as
above, with

A = [AB AN ]

as described.

Now all pivot steps in the simplex method are just Gauss-Jordan row
operations and in the final tableau, the columns corresponding to the basic
variables B are basic columns.

So we have

M =

 AB AN 0 b

−cTB −cTN 1 z0

 G-J
→ M̂ =

 I ÂN 0 b̂

0T −ĉTN 1 ẑ0

 .
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Matrix algebra and LP – 8

Recall from Maths I that a sequence of Gauss-Jordan row operations on a
matrix M corresponds to premultiplying M by a set of elementary matrices.

That is, applying the simplex method to M corresponds to
premultiplication of M by the product of these elementary matrices.

This product is termed a “check matrix” and will be denoted W .

Thus there is a square matrix W , such that WM = M̂ and we want to
determine that W .

For compatibility, the order of W must be (m + 1)× (m + 1) and we note
that in the matrix multiplication on the LHS, the first m entries in a row
of the matrix W multiply the entries from the [AB |AN |0|b] part of M,
whereas the last entry in each row of the matrix W multiplies each of the
z-row entries.
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Matrix algebra and LP – 9

So let’s partition W into the form

W =

[
W1 W2

W3 W4

]
,

where W1 is m ×m, W2 is m × 1, W3 is 1×m, and W4 is 1× 1.

What does our matrix multiplication WM = M̂ now give us?

[
W1 W2

W3 W4

] AB AN 0 b

−cTB −cTN 1 z0

 =

 I ÂN 0 b̂

0T −ĉTN 1 z ′0

 .

From the z-columns, rows 1 to m, W1.0 + W2 = 0 =⇒ W2 = 0.

From (m + 1)st row of the z-column, W3.0+W4.1 = 1 =⇒ W4 = 1.
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Matrix algebra and LP – 10

So we now have

W =

[
W1 0
W3 1

]
.

and so we see that

[W1 0]

[
AB

−cTB

]
= I =⇒ W1AB = I , and hence W1 = A−1B .

[W3 1]

[
AB

−cTB

]
= 0T =⇒ W3AB − cTB = 0T =⇒ W3 = cTBA

−1
B .

So we now have W =

 A−1B 0

cTBA
−1
B 1

 .
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Matrix algebra and LP – 11
Therefore, we write the equation for the final tableau as

M̂ = WM =

 A−1B 0

cTBA
−1
B 1


 AB AN 0 b

−cTB −cTN 1 z0



=

 I A−1B AN 0 A−1B b

0T cTBA
−1
B AN − cTN 1 cTBA

−1
B b + z0


and leaving out the z-column, this becomes

=

 I A−1B AN A−1B b

0T cTBA
−1
B AN − cTN cTBA

−1
B b + z0

 .
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Matrix algebra and LP – 12

We now have a way of representing the simplex method as a matrix
multiplication.

Given a basis (choice of non-zero variables) we can work out the
appropriate tableau by inverting AB .
Note that for certain choices of B we will find A−1B b has negative
components and so the basic solution xB = A−1B b is not feasible. The
simplex algorithm tells us which Bs to consider.

The simplex algorithm employs ‘tricks’ to compute the inverse of a new
AB from the old A−1B (exploiting the fact that only one variable enters and
one leaves).

The matrix format is handy for many applications. In particular, it allows
us to consider what happens if the problem is changed slightly, for
instance, if some of the constants in A, b or c are changed.
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Matrix algebra and LP – 13
We have

M̂ =

 I A−1B AN A−1B b

0T cTBA
−1
B AN − cTN cTBA

−1
B b + z0

 .

Recall in our earlier example that we had

M̂ =

x1 x2 x4 x3 x5 z b

1 0 0 3
2

1
2 0 2

0 1 0 1
2 −1

2 0 2

0 0 1 1
2

1
2 0 0

0 0 0 3 2 1 6

and so we can easily write down A−1B AN , and A−1B b.
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Matrix algebra and LP – 14

Recall the dual problem is

(D) min yTb + z0

yTA ≥ cT

all yi , free variables.

Consider letting y = (A−1B )TcB , then we have AT
B y = cB , and hence if

AT
Ny ≥ cN , then y is feasible.

Furthermore, consider xB = A−1B b, xN = 0, which is a basic solution for
(P), and we see that the complementary slackness relation is satisfied since

cB − AT
B y = 0 =⇒ (cB − AT

B y)TxB = 0

xN = 0 =⇒ (cN − AT
Ny)TxN = 0.
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Matrix algebra and LP – 15

Consequently,

xB = A−1B b, xN = 0 and y = (A−1B )TcB

are respectively optimal for the primal and dual, provided AT
Ny ≥ cN ,

which occurs at the optimal solution to (P).

We also have that for these solutions that

cTB xB = cTBA
−1
B b = yTb.

We have shown that in general, the objective row of the final (optimal)
tableau contains

yTAN − cTN ,

where y is the vector of dual variables.

Note also that W contains the dual variables y = cTBA
−1
B .

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 36 / 38



Takeaways

The dual problem has an interpretation that is useful

We can solve problems in the dual domain sometimes more easily

We can represent LP Tableaus as matrices

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 37 / 38



Further reading I
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