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Section 1

Sensitivity Analysis
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Sensitivity analysis

Often, when a business or industry is modelling its operations, there is
insufficient information available to determine constants correctly.

For instance, in the telecommunications industry, the traffic matrices used
to estimate numbers of calls between two points is just that: an estimate.
Consequently, the optimal solution of an LP might be based on data that
is not quite accurate. That is, we have the optimal solution to a model,
but the model might be based on flawed data.

Businesses then need to know how that optimal solution is affected, if the
model changes; how robust is the optimal solution to errors? This can be
termed “post-optimal analysis”.

We have seen that once B, AB and cB are known and given some initial
data for M, we can directly get M̂ without going through all the steps of
the Simplex Method.

Post-optimal analysis is based on this idea, where we investigate how
changes in the model affect optimality and feasibility.
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Errors in Linear Program Formulation

All data has errors, or noise
I artefacts of measurement
I we might only have estimates of hard-to-measure quantities

Optimisation often considers the future
I we base objectives and constraints on predictions

Formulating a LP often involves approximation
I quadratic cost approximated as linear
I complex boundary approximated by linear segments

All of these factors mean that the LP that we solve today, might be
different from the real problem we aim to solve
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Errors in Linear Program Formulation

All LPs have errors in their formulation

Do these errors matter?
I maybe a small error doesn’t really change the result?
I maybe even a large error only has a small affect?

Sensitivity analysis is the process of learning about how sensitive or
robust our LP is to such errors
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Types of errors

We can have errors in several components of the problem

The objective function coefficients c

The constraint coefficients A

The constraint coefficients b

We might want to add a constraint

We might want to add a variable

Changes may effect

optimality (the size and location of optimal value)

feasibility

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 6 / 40



Section 2

Sensitivity Analysis: changes in the objective
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Changes in the objective function coefficients
Use the matrix view of Simplex. If c changes, to c̆, then only the last row
of the simplex tableau M̂ changes, as

M̂ =

 A−1B 0

c̆TBA
−1
B 1


 AB AN b

−c̆TB −c̆TN z0



=

 I A−1B AN A−1B b

0T c̆TBA
−1
B AN − c̆TN c̆TBA

−1
B b + z0

 .

We can determine if the new solution should have the same basic variables,
but checking to see if the last row has negative elements now, i.e., is

c̆TBA
−1
B AN − c̆TN ≥ 0.
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Changes in the objective function coefficients

Example

Suppose that the furniture manufacturer from our earlier problem

max z = 13x1 + 12x2 + 17x3
subject to

2x1 + x2 + 2x3 ≤ 225
x1 + x2 + x3 ≤ 117

3x1 + 3x2 + 4x3 ≤ 420
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

has determined that with a change in the economy, he would now make a
profit of $z given by the objective function

12.75x1 + 12.25x2 + 17x3.

1 How would this affect production?

2 Will his new optimal profit be more or less than before?
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Changes in the objective function coefficients

Recall that the final (optimal) tableau from the original furniture
manufacturing problem was

x1 x2 x3 x4 x5 x6 z b

1 −1 0 2 0 −1 0 30

0 1
2 0 −1

2 1 0 0 41
2

0 3
2 1 −3

2 0 1 0 821
2

0 1
2 0 1

2 0 4 1 17921
2

with B = {x1, x5, x3} and N = {x2, x4, x6}

We first rearrange the Tableau into the desired format with the basic
variables on the left.
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Changes in the objective function coefficients

x1 x5 x3 x2 x4 x6 z b

1 0 0 −1 2 −1 0 30

0 1 0 1
2 −1

2 0 0 41
2

0 0 1 3
2 −3

2 1 0 821
2

0 0 0 1
2

1
2 4 1 17921

2

and so

A−1B AN =


−1 2 −1

1
2 −1

2 0

3
2 −3

2 1


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Changes in the objective function coefficients

With the new objective function coefficients

c̆TB = [12.75 0 17] and c̆TN = [12.25 0 0],

we have that c̆TBA
−1
B AN − c̆TN

= [12.75 0 17]


−1 2 −1

1
2 −1

2 0

3
2 −3

2 1

− [12.25 0 0]

= [12 0 4.25] ≥ 0

and since all entries are still nonnegative, this solution will still be optimal
with new value z∗ = 30($12.75) + 82.5($17) = $1785.
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Changes in the objective function coefficients

Example

Now the furniture manufacturer has determined that he would now make a
profit of $z given by

12.5x1 + 12.5x2 + 17x3.

So with B = {x1, x5, x3} and N = {x2, x4, x6} as before, we have

c̆TB = [12.5 0 17] and c̆TN = [12.5 0 0].

and so we again consider

c̆TBA
−1
B AN − c̆TN .
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Changes in the objective function coefficients

[12.5 0 17]


−1 2 −1

1
2 −1

2 0

3
2 −3

2 1

− [12.5 0 0] =

[
1

2
− 1

2
4.5

]
6≥ 0

and we no longer have an optimal basic solution. The tableau is

M̂ =

x1 x5 x3 x2 x4 x6 z b

1 0 0 −1 2 −1 0 30

0 1 0 1
2 −1

2 0 0 41
2

0 0 1 3
2 −3

2 1 0 821
2

0 0 0 1
2 −1

2 41
2 1 17771

2
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Changes in the objective function coefficients

One more G-J pivot step on the (1, 5) entry at this stage gives the optimal
tableau.

M̂ =

x1 x5 x3 x2 x4 x6 z b

1
2 0 0 −1

2 1 −1
2 0 15

1
4 1 0 1

4 0 −1
4 0 12

3
4 0 1 3

4 0 1
4 0 105

1
4 0 0 1

4 0 41
4 1 1785

with the new basic variables being B = {x4, x5, x3}.
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Changes in the objective function coefficients

Example

Suppose we can increase the profit $c3 on each bedframe by an amount
∆, provided we decrease the profit on each desk and chair by the same
amount.

We can find limits on ∆, such that in our optimal solution, our basic
variables remain unchanged. For the new c̆TB = [13−∆, 0, 17 + ∆] and

c̆TN = [12−∆, 0, 0], we have

c̆TBA
−1
B AN − c̆TN = [(13−∆), 0, (17 + ∆)]


−1 2 −1

1
2
− 1

2
0

3
2
− 3

2
1

− [(12−∆) 0 0]

=
[
1
2

+ 7
2
∆, 1

2
− 7

2
∆, 4 + 2∆

]
≥ 0 for ∆ ∈

[
− 1

7
, 1
7

]
.
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Section 3

Sensitivity analysis: Changes in the constraint
coefficients
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Changes in the constraint coefficients (aij)

If (aij) is associated with a basic variable xj ∈ B, then AB will change, and
hence so will A−1B .

Often it requires as much work recalculating A−1B as it does reworking the
problem from scratch and so we will only consider the case where the
coefficient aij being changed is associated with a non-basic variable.

In this case, we can use a duality argument to determine if the change
affects the present basic optimal solution.

Recall that if the current basic solution x is optimal, then so is the
associated dual solution y. In fact, the current primal solution is optimal if
and only if the associated dual solution is dual-feasible.
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Changes in the constraint coefficients (aij)

Recall that corresponding to every non-basic variable, there is a dual
constraint.

If we change a coefficient aij associated with a non-basic variable xj , we
also change the associated dual constraint.

The present basic solution x will still satisfy the changed primal
constraint.

I That this is true is because the changed aij is being multiplied by zero,
since xj is non-basic.

If the new dual solution satisfies the changed dual constraint, then
we still have the optimal solution!
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Changes in the constraint coefficients (aij)

Example

Suppose now, a brand new design for a chair is proposed to increase their
popularity. In the original design, each chair consumed 1 unit of labour, 1
unit of metal, and 3 units of wood. The new design however, consumes
a12 = 4 units of labour, a22 = 0 units of metal, and a32 = 21

2 units of
wood.

Is the new profit still optimal?

Corresponding to the variable x2 (the number of chairs), is a dual
constraint that has changed from

y1 + y2 + 3y3 ≥ 12 to 4y1 + 2
1

2
y3 ≥ 12,

but what is the dual solution corresponding to our basic solution?
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Changes in the constraint coefficients (aij)

Recall that from our original Primal LP, we had
x1 = 30, x2 = 0, x3 = 82.5, x4 = 0, x5 = 4.5, x6 = 0, giving us the following
inequalities from the CSRs

2y1 + y2 + 3y3 = 13

2y1 + y2 + 4y3 = 17

y2 = 0.

The dual solution corresponding to this basic solution is therefore given by
y = [12 0 4], which satisfies all of the original dual constraints. We note
that it also satisfies the new dual constraint

4y1 + 2
1

2
y3 = 4× 1

2
+ 2

1

2
× 4 = 12 (≥ 12)

and therefore x is still optimal.
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Changes in the constraint coefficients (aij)

If, however, we had a chair design that used 1 unit of labour, 2 units of
metal, and 2 units of wood, then calculating −c′N

T = cTBA
−1
B AN − c′N

T ,

the tableau M̂ becomes

M̂ =

x1 x2 x3 x4 x5 x6 z b

1 0 0 2 0 −1 0 30

0 3
2 0 −1

2 1 0 0 41
2

0 1
2 1 −3

2 0 1 0 821
2

0 −7
2 0 1

2 0 4 1 17921
2

and the dual solution is no longer feasible, and so x is not optimal in this
case. That is, y1 + 2y2 + 2y3 = 1

2 + 2× 4 = 81
2 (6≥ 12).
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Changes in the constraint coefficients (aij)

Since the dual solution is no longer feasible, we perform two more G-J
pivot steps, to get the new optimal solution given by the new tableau

M̂ =

x1 x2 x3 x4 x5 x6 z b

1
2 0 0 1 0 −1

2 0 15

1
6 1 0 0 2

3 −1
6 0 8

2
3 0 1 0 −1

3
1
3 0 101

1
3 0 0 0 7

3
11
3 1 1813

.

So this chair design would increase profit to $1813, with a production
including 8 chairs.
That is, x1 = 0, x2 = 8, x3 = 101, x4 = 15, x5 = 0, x6 = 0.
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Section 4

Sensitivity analysis: Adding a new variable / dual
constraint
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Adding a new variable / dual constraint

Example

In an effort to improve business, the furniture manufacturer decides to
make video cabinets as well. Each video cabinet needs 1.5 units of labour,
1 unit of metal, and 2 units of wood; the profit from each cabinet sold is
$14.

If we let x7 be the number of video cabinets produced. Then the new
problem is

(P) max z = 13x1 + 12x2 + 17x3 + 14x7
2x1 + x2 + 2x3 + 1.5x7 ≤ 225
x1 + x2 + x3 + x7 ≤ 117

3x1 + 3x2 + 4x3 + 2x7 ≤ 420

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0, x7 ≥ 0.
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Adding a new variable / dual constraint

In the dual, there will be one more dual constraint,

1.5y1 + y2 + 2y3 ≥ 14.

Checking to see if the original dual solution y = [12 0 4] satisfies the new
dual constraint, we find that it is infeasible for the dual. That is,

1.5y1 + y2 + 2y3 = 1.5× 1

2
+ 2× 4 = 8

3

4
6≥ 14.

and so the original primal solution is no longer optimal. Hence we know
that we can increase our profit by including some video cabinets in the
production schedule.

To determine the new production schedule, we can use our knowledge of
how to update M from the beginning of this section.
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Adding a new variable / dual constraint

M̂ =

 A−1B 0

cTBA
−1
B 1

 AB AN b

−cTB −cTN z0



=

 I A−1B AN A−1B b

0T cTBA
−1
B AN − cTN cTBA

−1
B b + z0

 .

Since x7 is a non-basic variable in the current solution, only AN and cN
have been modified.

We therefore do not need to recalculate A−1B and cTBA
−1
B , but only need to

evaluate A−1B AN and
(
cTBA

−1
B

)
AN − cTN for the new AN and cN to get the

current tableau inclusive of the variable x7.
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Adding a new variable / dual constraint

x1 x2 x3 x4 x5 x6 x7 b

1 −1 0 2 0 −1 1 30

0 1
2

0 − 1
2

1 0 1
4

4 1
2

0 3
2

1 − 3
2

0 1 − 1
4

82 1
2

0 1
2

0 1
2

0 4 − 21
4

1792 1
2

1 −3 0 4 −4 −1 0 12

0 2 0 −2 4 0 1 18

0 2 1 −2 1 1 0 87

0 11 0 −10 21 4 0 1887

1
4

− 3
4

0 1 −1 − 1
4

0 3

1
2

1
2

0 0 2 − 1
2

1 24

1
2

1
2

1 0 −1 1
2

0 93

2 1
2

3 1
2

0 0 11 1 1
2

0 1917

The optimal solution is z∗ = 1917, at x1 = 0, x2 = 0, x3 = 93, x7 = 24.
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Section 5

Sensitivity analysis: changes to feasibility
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Changes to feasibility

We will now consider changes that affect feasibility:

(i) changes in the right-hand side, i.e., b.

(ii) including a new constraint.
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Section 6

Feasibility, changes in b
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Changes to feasibility

Recall that

M̂ =

 I A−1B AN A−1B b

0T cTBA
−1
B AN − cTN cTBA

−1
B b + z0

 .

from which we see that the optimal basis B remains optimal for changing
b if A−1B b ≥ 0 with the new b.
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Changes in the right-hand side, i.e., b

Example

Let’s determine bounds on the amount of wood available in Our First
Example such that the original basis remains optimal.

Recall our final original tableau.

x1 x2 x3 x4 x5 x6 z b

1 −1 0 2 0 −1 0 30

0 1
2 0 −1

2 1 0 0 41
2

0 3
2 1 −3

2 0 1 0 821
2

0 1
2 0 1

2 0 4 1 17921
2

with B = {x1, x5, x3} and N = {x2, x4, x6}.
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Changes in the right-hand side, i.e., b

Let ∆ be the number of units of wood available, then with B = {x1, x5, x3}

A−1B b =


2 0 −1

−1
2 1 0

−3
2 0 1




225

117

∆

 =


450−∆

41
2

∆− 3371
2



≥ 0 when ∆ ∈
[

337
1

2
, 450

]
.

Example

Suppose now that the amount of available metal decreases from 117 units
to 113 units.
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Changes in the right-hand side, i.e., b

Then A−1B b =


2 0 −1

−1
2 1 0

−3
2 0 1




225

113

420

 =


30
1
2

821
2

 ≥ 0.

So our present optimal basis is still optimal, with the same optimal value

cTBA
−1
B b + z0 = [13, 0, 17]


2 0 −1

−1
2 1 0

−3
2 0 1




225

113

420

 = $1792.5

but with x1 = 30, x5 = 1
2 , x3 = 82.5.

x5 = 1
2 represents the fact that there is 117− 113 = 4 less units of metal

left over in this situation (x5 was previously 41
2), because we started with 4

units less and manufactured the same quantities of furniture.
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Changes in the right-hand side, i.e., b

Example

Suppose now that the amount of available metal decreases from 117 units
to 112 units (5 units less)

Then A−1B b =


2 0 −1

−1
2 1 0

−3
2 0 1




225

112

420

 =


30

−1
2

821
2

 6≥ 0,

and so the solution (not surprisingly) would no longer be feasible and
hence the basis B = {x1, x5, x3} is no longer optimal).

In this case, we can use a method called the “dual simplex method” to
determine a new optimal solution (to be introduced soon).

B = {x4, x1, x3} with (x4, x1, x3) = (1, 28, 84), optimal value $1792.
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Section 7

Sensitivity analysis: feasibility, including a new
constraint
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Including a new constraint

If the new constraint is satisfied by the original optimal solution, then
that constraint is obviously redundant, and the original optimal
solution is still valid.

If the original optimal solution does not satisfy the new constraint,
then more work needs to be done to find the new optimal solution. In
this case, the original optimal solution is outside the feasible region...

the new constraint has “cut it off”

The “dual simplex method” can be used to determine the new
optimal solution.

I start from current dual solution
I work towards solution that is primal feasible
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Takeaways

Optimisers should not assume that data is perfect
I it could contain errors or unknowns
I sensitivity analysis is how we can see whether the solutions depend

strongly on these errors

The matrix view of optimisations gives us a way to calculate
sensititivity without having the redo the optimisation again, and
again.

Often, even if the solution should change, we don’t have to go back
to the start
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Further reading I
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