
Optimisation and Operations Research
Lecture 22: Linear Programming Revisited

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

http:

//www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/

School of Mathematical Sciences,
University of Adelaide

October 29, 2019

http://www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/
http://www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/

Section 1

Linear Programming Revisited

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 2 / 23

Other Issues for LPs

Other approaches to solve LPs
I We looked at Simplex
I There are other approaches

Preprocessing
I Cleaning up the problem can make subsequent parts faster and more

reliable

What about non-linear, ...?

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 3 / 23

Section 2

Interior Point Methods

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 4 / 23

Boundary value and Interior point methods

There are two classes of methods for solving LPs

Boundary value methods
I searches around the vertices (boundary) of the feasible region
I e.g., Simplex

Interior point method
I find a feasible point inside region, and move towards the boundary
I e.g., Ellipsoid and Karmakar’s method

These days Matlab has two algorithms, you can choose

dual-simplex

interior-point

https://au.mathworks.com/help/optim/ug/linprog.html

https://au.mathworks.com/help/optim/ug/

linear-programming-algorithms.html

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 5 / 23

https://au.mathworks.com/help/optim/ug/linprog.html
https://au.mathworks.com/help/optim/ug/linear-programming-algorithms.html
https://au.mathworks.com/help/optim/ug/linear-programming-algorithms.html

Simplex is exponential

In the practical we show that Simplex takes an exponential number of
steps on the Klee-Minty example

In the worst case instance, Simplex takes exponential time

Interior point methods were developed in the pursuit of methods with
polynomial worst-case time complexity.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 6 / 23

Boundary value and Interior point methods

Interior point methods were developed in the pursuit of methods with
polynomial worst-case time complexity.
Historically:

Date Method (Developer) Worst case Average case

1947 Simplex (Dantzig) exp poly

1979 Ellipsoid (Khachiyan*) poly poly

1984 Interior point (Karmakar) poly poly

...

According to this table, you might expect the Ellipsoid Method to
out-perform the Simplex Method. The ellipsoid method was a big
theoretical breakthrough, but it turned out to be too slow for
practical problems, despite its polynomial (in comparison to
exponential) worst-case running time rating.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 7 / 23

Boundary value and Interior point methods

Two points that are noteworthy

Worst case analysis, and Big-O hide details
I exponential might not be that slow for the problem you want to solve
I worst cases may be rare for real problems

Interior point methods have moved forward
I it’s not always obvious which will be best for your problem, but you

should know they exist
I they lead towards interesting algorithms for non-linear optimisation

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 8 / 23

Interior-point methods

Follow a set of interior, feasible points

Converge towards optimum, but don’t exactly reach it

Often work by transforming the problem at each step

Use ideas like gradient projections
I these can generalise to non-linear problems
I you’ll see more of these if you do Optimisation III

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 9 / 23

Karmarker’s method

Example

max z = f (x , y) = x s.t. x + y = 2 and x , y ≥ 0.

Obviously the answer is z∗ = 2, at x∗ = 2, y∗ = 0.

The feasible region here is just a line
segment AB from (0, 2) to (2, 0).
Now suppose you pick any point
C 6= A or B, as a starting point
on that line segment. Note that the
direction of steepest ascent of z is the
direction ∇f (x , y) = (1, 0) = dT ,
say (from Maths 1B). So from C , to
maximise a function z = f (x , y), we
would normally head off in the direc-
tion d = (1, 0)T .

In this case, we would move off
horizontally from C and out of
the feasible region!

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 10 / 23

Karmarker’s method

If we move off from C in the direction d, we would need to stop
somewhere along that gradient d = (1, 0), and then project back onto the
feasible region (our line segment) to a point D, then we will be closer to
our maximiser. CD is called a projected gradient and has allowed us to
improve on our value of z .

If we repeat the procedure over and over, with small enough steps, we
should end up close to B.
Karmarkar’s Method essentially does something like this.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 11 / 23

Karmarkar’s Interior Point Method – 1
For a problem in the form

(P1) min z = cTx

s.t. Ax = 0
¯

eTx = 1

x ≥ 0
¯

where

x ∈ Rn,

min z = 0,

rank(A) = m,

A is m × n and(
1
n ,

1
n , . . . ,

1
n

)T
is feasible.

We assume we will be satisfied with a feasible point having an optimal
z-value ∈ [0, ε), for some small ε > 0.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 12 / 23

Karmarkar’s Interior Point Method – 2
Initialise:

Set x(0) = (1
n
, 1
n
, . . . , 1

n
)T .

Compute r =
1√

n(n − 1)
and set α =

(n − 1)

3n
.

Compute cTx(0) and set k = 0.

While cTx(k) ≥ ε (for some given ε)

Set Dk = diag(x
(k)
1 , x

(k)
2 , . . . , x

(k)
n) and M =

[
ADk

eT

]
.

Compute c(k) =

(
I −MT

(
MMT

)−1
M

)(
− Dkc

)
.

Compute y(k+1) =
(
1
n
, 1
n
, . . . , 1

n

)T
+ αr

c(k)

||c(k)||
.

Compute x(k+1) =
Dky

(k+1)

eTDky(k+1)
(vector in the original space).

Compute cTx(k+1) and set k = k + 1.

End

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 13 / 23

Remarks About Karmarkar

The direction c(k) is the projection of the transformed “steepest
descent” direction, −Dkc in the transformed problem.

So finding y(k) is making sure we find a feasible point in the
transformed space and we have maximised the rate of decrease in the
z-value.

The αr term ensures y(k+1) stays in the interior of the feasible region,
i.e., away from the boundary of the transformed unit simplex.

The inverse transformation back from y(k+1) to x(k+1) implies x(k+1)

will be feasible for (P1).

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 14 / 23

Karmarkar Example

Results to 4dp for ε = 0.0005 = 5× 10−4 are given below.

k (xk)T (yk)T z

0 (0.3333, 0.3333, 0.3333) (0.3333, 0.3333, 0.3333) −0.3333

1 (0.3975, 0.3333, 0.2692) (0.3975, 0.3333, 0.2692) −0.2692

2 (0.4574, 0.3333, 0.2093) (0.3930, 0.3415, 0.2655) −0.2093

3 (0.5090, 0.3333, 0.1576) (0.3883, 0.3489, 0.2628) −0.1576

4 (0.5507, 0.3333, 0.1160) (0.3839, 0.3549, 0.2612) −0.1160

5 (0.5827, 0.3333, 0.0840) (0.3803, 0.3594, 0.2602) −0.0840
...

...
...

...

19 (0.6661, 0.3333, 0.0006) (0.3704, 0.3703, 0.2593) −0.0006

20 (0.6662, 0.3333, 0.0004) (0.3704, 0.3703, 0.2593) −0.0004

For ε = 0.00000005 = 5× 10−8, to 8dp, the procedure stops at
x(46) = (0.66666663, 0.33333333, 0.00000004)T and z = −0.00000004.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 15 / 23

Section 3

Preprocessing for optimisation

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 16 / 23

Preprocessing

Typical tasks

put problem into standard form

remove redundant constraints or variables

rescale coefficients

Matlab: https://au.mathworks.com/help/optim/ug/

linear-programming-algorithms.html

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 17 / 23

https://au.mathworks.com/help/optim/ug/linear-programming-algorithms.html
https://au.mathworks.com/help/optim/ug/linear-programming-algorithms.html

Preprocessing in Matlab’s linprog before Simplex
For row k , take the constraint aTk x = bk

I compute upper and a lower bounds of aTk x (if finite)
I if the bound = bk , then the constraint is forcing
I it fixes the values of xi corresponding to non-zero values of ak , so they

can be eliminated from the problem

Check if any variables have equal upper and lower bounds. If so,
check for feasibility, and then fix and remove the variables.
Check if any inequality constraint involves just one variable. If so,
check for feasibility, and change the linear constraint to a bound.
Check if any equality constraint involves just one variable. If so,
check for feasibility, and then fix and remove the variable.
Check if any constraint matrix has a zero row. If so, check for
feasibility, and delete the row.
Check if the bounds and linear constraints are consistent.
Check if any variables appear only as linear terms in the objective
function and do not appear in any linear constraint. If so, check for
feasibility and boundedness, and fix the variables at their appropriate
bounds.
Change any linear inequality constraints to linear equality constraints
by adding slack variables.
Shift all lower bounds to zero.

Matlab’s documentation doesn’t say it, but it also seems to perform some
scaling (which we can see in the Klee-Minty example running times).

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 18 / 23

Section 4

Where to next?

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 19 / 23

Classes of optimisations

Linear v non-linear

Continuous v discrete (integer)

Unconstrained v constrained

Deterministic v Stochastic

Problem structure
I Low- v high-dimensional
I Sparse v Dense

Single- v Multi-objective

Static v Dynamic

Distributed v centralised

Taxonomy of optimisation problems
http://www.neos-guide.org/content/optimization-taxonomy

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 20 / 23

http://www.neos-guide.org/content/optimization-taxonomy

Matlab

Advice on which Matlab “solver” routine to use (from the Optimization
Toolbox)
https://au.mathworks.com/help/optim/ug/

optimization-decision-table.html

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 21 / 23

https://au.mathworks.com/help/optim/ug/optimization-decision-table.html
https://au.mathworks.com/help/optim/ug/optimization-decision-table.html

Non-linear programming

Combinations of objective and constraint properties
I ignoring for the moment integer v continous variables

All problems

Simple domain

Convex Quadratic

Linear

We saw how to tackle these by linear approximation in your project
this year

See Optimisation III next year.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 22 / 23

Further reading I

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII October 29, 2019 23 / 23

	Linear Programming Revisited
	Interior Point Methods
	Preprocessing for optimisation
	Where to next?

