Optimisation and Operations Research Lecture 23: Revision

Matthew Roughan <matthew.roughan@adelaide.edu.au>

http:

//www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/

School of Mathematical Sciences, University of Adelaide

August 13, 2019

◆□ → ◆□ → ◆ = → ◆ = → ○ へ ⊙

Section 1

Revision

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Revision

(日) (四) (三) (三) (三)

Translation

The hardest part of optimisation is often translating a messy real-world problem into mathematics

- Break it down
 - What are my variables?
 - ★ what can I control?
 - * what are the decisions I make?
 - What is my objective?
 - * express what you want to achieve in terms of a function of the variables
 - What are my constraints?
 - * what are the limits on the variables?

Problem Classification

• First job is often to work out what type of problem you are solving

- Integer or Continous
 - sometimes becomes integer when we introduce extra artificial variables
- Other classifications we haven't covered in this course in detail

Translation

We have been dealing with LPs and ILPs

- Variables are numbers
 - we put them in a vector x
- The objective is a linear function of the variables
 - we can always write it as max or min of

$$z=\sum_i c_i x_i$$

where the x_i are the variables, and c_i are some numbers

- The constraints are linear inequalities or equalities of the variables
 - can always be written into standard form Ax = b
 - don't forget non-negativity

Approximation

• All real problems have a tradeoff between

- realism
- simplicity

We need to balance these

- We are doing linear programming
 - sometimes the problem will be non-linear
 - often easier to approximate, than to try non-linear methods
- You need to learn "tricks"
 - linear segment approximation
 - what parts of a curve "matter"
 - introducing extra variables

Solution Methods

- Simplex (for LPs)
 - plus duality and compementary slackness
 - sensitivity analysis
- Heuristics (for ILPs)
 - greedy
 - GAs
- Branch and Bound (for ILPs)

Complexity

- An important part of using any algorithm is understanding its computational complexity
 - how long it will take to run
- Often we describe this with big-O notation
 - know how to derive
 - know the limitations

Coding

You need to be able to program to be able to deal with real problems

- Matlab
 - very good general purpose tool
 - shouldn't be the only language you know!
- AMPL (with lpsolve)
 - specific to optimisation
 - much more powerful than I have shown
- There are many others, but the above are the ones we have used

Exam notes

- You are allowed to take in some notes
 - 2 pages
 - double-sided
 - hand-written
- Standard restriction on calculators
 - Calculators without remote communications facilities are permitted.
- English and foreign-language dictionaries may be used

Further reading I

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト