Assignment 5: Solutions

TOTAL MARKS: 20

1. (a) Using the notation value v_i and weight w_i (as in max $v = \sum_i v_i x_i$, s.t. $\sum_i w_i x_i \leq w$), we have

1	1	1 2		4	5	6	
v_i	43	41	27	3	15	50	
w_i	20	19	14	16	7	28	
v_i/w_i	2.15	2.16	1.93	2	2.14	1.79	

Since variable x_2 has the best value to weight (v_i/w_i) ratio and there is no integer (binary) requirement, we should make x_2 as large as possible i.e. $x_2^* = 45/19 = 2.3684$, and all other $x_i^* = 0$. Then $z^* = 41 \times x_2^* \approx 97.1053$.

[4 marks]

1

(b) The solution is $\mathbf{x}^T = (1, 1, 0, 0, 0.8571, 0)$ with $z^* = 96.8571$

[4 marks]

(c) The solution is $\mathbf{x}^T = (1, 0, 0, 1, 1, 0)$ with $z^* = 90$. AMPL specification

Model file.

par	am n;
par	am w{i in 1n};
par	am v{i in 1n};
par	am max_weight;
var	<pre>z{i in 1n} >= 0 binary;</pre>
# v	ar x{i in 1n} >= 0, <= 1;
# v	ar x{i in 1n} >= 0 binary;
max	imize value: sum{i in 1n} v[i]*z[i];
sub	ject to weight: sum{i in 1n} w[i]*z[i] <= max_weight;

Data file.

param : param :	n := tota	6; l_volume	:= 45;				
param:	v	w :=					
1	43	20					
2	41	19					
3	27	14					
4	32	16					
5	15	7					
6	50	28;					

Comment out/in the appropriate variable line for integer or non-integer constraints. NB: You don't need a separate data and model file to get the solution here, but it makes you code more adaptable and reusable.

NB: The question asked for AMPL – you get zero for Matlab code.

[4 marks]

(d) As we proceed from (a) to (b) to (c), the feasible region becomes more restriced, and so the value of z decreases, as we would expect.

(e) Rounding the solution in (a) gives $\mathbf{x} = (0, 2, 0, 0, 0, 0)$ or (0, 3, 0, 0, 0, 0) neither of which is feasible for the 0-1 (binary) (*ILP*). Rounding the solution in (b) gives $\mathbf{x} = (1, 1, 0, 0, 1, 0)$ or (1, 1, 0, 0, 0, 0) both of which are feasible, but neither of which is optimal, for the 0-1 (binary) (*ILP*).

[2 marks]

(f) In the standard greedy approach, we sort the items in terms of their relative value, *i.e.*, , it an item has value c_i and volume a_i , then we give precedence to higher c_i/a_i . The we add them in this order until we run out of space. For the items in question the relative values are

(2.1500, 2.1579, 1.9286, 2.0000, 2.1429, 1.0714)

So we add items (in order) 2, and 1, and then the space remaining is too small for another item. The total value is then $z^* = 84$, which is worse than the optimal (as expected).

2 marks

(g) The computations required are one divide per item, and then we sort all of the items. The complexity of a mergesort in the worst case is $O(n \log n)$, which dominates over the divides (and also subsequent selection). So the overall complexity is $O(n \log n)$.

[2 marks]

Additional information: we could put the solution through MATLAB using

>> c=-[43;41;27;32;15;30];
>> a=[20 19,14,16,7,28];
>> b=45;
>> lb=zeros(size(c));
>> ub=ones(size(c));

We use c = -[43; 41; 27; 32; 15; 30], because *linprog* minimises! Then we could use

[x,f] = linprog(c,a,b,[],[],lb) [x,f] = linprog(c,a,b,[],[],lb,ub) [x,f] = intlinprog(c,1:length(c),a,b,[],[],lb,ub)

to solve the LP and IP versions of the problem.