Assignment 5: Solutions

TOTAL MARKS: 20

1. (a) Using the notation value v_{i} and weight w_{i} (as in $\max v=\sum_{i} v_{i} x_{i}$, s.t. $\sum_{i} w_{i} x_{i} \leq w$), we have

1	1	2	3	4	5	6
v_{i}	43	41	27	3	15	50
w_{i}	20	19	14	16	7	28
v_{i} / w_{i}	2.15	2.16	1.93	2	2.14	1.79

Since variable x_{2} has the best value to weight $\left(v_{i} / w_{i}\right)$ ratio and there is no integer (binary) requirement, we should make x_{2} as large as possible i.e. $x_{2}^{*}=45 / 19=2.3684$, and all other $x_{i}^{*}=0$. Then $z^{*}=41 \times x_{2}^{*} \approx 97.1053$.
(b) The solution is $\mathbf{x}^{T}=(1,1,0,0,0.8571,0)$ with $z^{*}=96.8571$
(c) The solution is $\mathbf{x}^{T}=(1,0,0,1,1,0)$ with $z^{*}=90$.

AMPL specification
Model file.

param n;

param w\{i in 1..n\}
param v\{i in 1..n\}
param max_weight;
var $\mathrm{z}\{\mathrm{i}$ in $1 . \mathrm{n}\}>=0$ binary;
\# var $x\{i$ in $1 \ldots n\}>=0,<=1$;
\# var $x\{i$ in $1 \ldots n\}>=0$ binary;
maximize value: $\quad \operatorname{sum}\{i$ in $1 . . n\}$ v[i] $\mathrm{z}_{\mathrm{z}}[\mathrm{i}]$;
subject to weight: $\operatorname{sum\{ i}$ in $1 \ldots \mathrm{n}\} \mathrm{w}[\mathrm{i}] * \mathrm{z}[\mathrm{i}]$ <= max_weight;
Data file.

param n := 6;
 param total_volume := 45;

param: v w :=
$\begin{array}{lll}1 & 43 & 20\end{array}$
$\begin{array}{llll}2 & 41 & 19 \\ 3 & 27 & 14\end{array}$
$\begin{array}{lll}4 & 32 & 16\end{array}$
$\begin{array}{llr}5 & 15 & 7 \\ 6 & 50 & 28 ;\end{array}$
Comment out/in the appropriate variable line for integer or non-integer constraints.
NB: You don't need a separate data and model file to get the solution here, but it makes you code more adaptable and reusable.
NB: The question asked for AMPL - you get zero for Matlab code.
(d) As we proceed from (a) to (b) to (c), the feasible region becomes more restriced, and so the value of z decreases, as we would expect.
(e) Rounding the solution in (a) gives $\mathbf{x}=(0,2,0,0,0,0)$ or $(0,3,0,0,0,0)$ neither of which is feasible for the 0-1 (binary) (ILP). Rounding the solution in (b) gives $\mathbf{x}=(1,1,0,0,1,0)$ or $(1,1,0,0,0,0)$ both of which are feasible, but neither of which is optimal, for the $0-1$ (binary) (ILP).
[2 marks]
(f) In the standard greedy approach, we sort the items in terms of their relative value, i.e., , it an item has value c_{i} and volume a_{i}, then we give precedence to higher c_{i} / a_{i}. The we add them in this order until we run out of space. For the items in question the relative values are

$(2.1500,2.1579,1.9286,2.0000,2.1429,1.0714)$

So we add items (in order) 2, and 1, and then the space remaining is too small for another item. The total value is then $z^{*}=84$, which is worse than the optimal (as expected).
[2 marks]
(g) The computations required are one divide per item, and then we sort all of the items. The complexity of a mergesort in the worst case is $O(n \log n)$, which dominates over the divides (and also subsequent selection). So the overall complexity is $O(n \log n)$.

Additional information: we could put the solution through Matlab using

$$
\gg c=-[43 ; 41 ; 27 ; 32 ; 15 ; 30] \text {; }
$$

>> $a=[20 \quad 19,14,16,7,28]$;
>> b=45;
>> lb=zeros(size(c));
>> ub=ones(size(c));
We use $c=-[43 ; 41 ; 27 ; 32 ; 15 ; 30]$, because linprog minimises! Then we could use

$$
[x, f]=\operatorname{linprog}(c, a, b,[],[], l b)
$$

$[\mathrm{x}, \mathrm{f}]=\operatorname{linprog}(\mathrm{c}, \mathrm{a}, \mathrm{b},[\mathrm{l},[\mathrm{l}, \mathrm{lb}, \mathrm{ub})$
$[x, f]=\operatorname{intlinprog}(c, 1: \operatorname{length}(c), a, b,[],[], l b, u b)$
to solve the LP and IP versions of the problem.

