
Optimisation and Operations Research (APP MTH 2105 and 7105): 2016 1

Assignment 5: Solutions

TOTAL MARKS: 20

1. (a) Using the notation value vi and weight wi (as in max v =
∑

i vixi, s.t.
∑

i wixi ≤ w), we
have

ı 1 2 3 4 5 6
vi 43 41 27 3 15 50
wi 20 19 14 16 7 28

vi/wi 2.15 2.16 1.93 2 2.14 1.79

Since variable x2 has the best value to weight (vi/wi) ratio and there is no integer (binary)
requirement, we should make x2 as large as possible i.e. x∗

2 = 45/19 = 2.3684, and all other
x∗
i = 0. Then z∗ = 41 × x∗

2 ≈ 97.1053.

[4 marks]

(b) The solution is xT = (1, 1, 0, 0, 0.8571, 0) with z∗ = 96.8571

[4 marks]

(c) The solution is xT = (1, 0, 0, 1, 1, 0) with z∗ = 90.

AMPL specification

Model file.

param n;

param w{i in 1..n};

param v{i in 1..n};

param max_weight;

var z{i in 1..n} >= 0 binary;

var x{i in 1..n} >= 0, <= 1;

var x{i in 1..n} >= 0 binary;

maximize value: sum{i in 1..n} v[i]*z[i];

subject to weight: sum{i in 1..n} w[i]*z[i] <= max_weight;

Data file.

param n := 6;

param total_volume := 45;

param: v w :=

1 43 20

2 41 19

3 27 14

4 32 16

5 15 7

6 50 28;

Comment out/in the appropriate variable line for integer or non-integer constraints.

NB: You don’t need a separate data and model file to get the solution here, but it makes
you code more adaptable and reusable.

NB: The question asked for AMPL – you get zero for Matlab code.

[4 marks]

(d) As we proceed from (a) to (b) to (c), the feasible region becomes more restriced, and so the
value of z decreases, as we would expect.

[2 marks]

Optimisation and Operations Research (APP MTH 2105 and 7105): 2016 2

(e) Rounding the solution in (a) gives x = (0, 2, 0, 0, 0, 0) or (0, 3, 0, 0, 0, 0) neither of which is
feasible for the 0-1 (binary) (ILP). Rounding the solution in (b) gives x = (1, 1, 0, 0, 1, 0)
or (1, 1, 0, 0, 0, 0) both of which are feasible, but neither of which is optimal, for the 0-1
(binary) (ILP).

[2 marks]

(f) In the standard greedy approach, we sort the items in terms of their relative value, i.e., , it
an item has value ci and volume ai, then we give precedence to higher ci/ai. The we add
them in this order until we run out of space. For the items in question the relative values
are

(2.1500, 2.1579, 1.9286, 2.0000, 2.1429, 1.0714)

So we add items (in order) 2, and 1, and then the space remaining is too small for another
item. The total value is then z∗ = 84, which is worse than the optimal (as expected).

[2 marks]

(g) The computations required are one divide per item, and then we sort all of the items. The
complexity of a mergesort in the worst case is O(n log n), which dominates over the divides
(and also subsequent selection). So the overall complexity is O(n log n).

[2 marks]

Additional information: we could put the solution through Matlab using

>> c=-[43;41;27;32;15;30];

>> a=[20 19,14,16,7,28];

>> b=45;

>> lb=zeros(size(c));

>> ub=ones(size(c));

We use c = −[43; 41; 27; 32; 15; 30], because linprog minimises! Then we could use

[x,f] = linprog(c,a,b,[],[],lb)

[x,f] = linprog(c,a,b,[],[],lb,ub)

[x,f] = intlinprog(c,1:length(c),a,b,[],[],lb,ub)

to solve the LP and IP versions of the problem.

