Tutorial 2

Make sure you prepare these BEFORE the class.

Solutions will be handed out at the tutorial. They will not be put on MyUni.

- 1. **Translation:** Consider the following *portfolio management* problem. A bank has \$1 million to invest in variety of bonds offered by the government and other agencies. Each bond has a *rated quality*, and an *after-tax yield*, and a *years to maturity* (how long the investment is committed). The portfolio manager must try to maximise the return on investment, but must also meet other criteria:
 - 1. the average quality of bonds cannot be worse than 1.5 (note that for quality, a low number corresponds to high-quality)
 - 2. the average years to maturity should not exceed 4 years.

Assuming there were 4 possible bonds

- (a) What are the variables? *Hint: define variables* x_1, x_2, x_3 and x_4 .
- (b) What is the objective?
- (c) Write a series of linear constraints. *Hint: there should be three.*
- (d) What are the bounds on the variables?

2. Interpretation:

Imagine we start with a LP

which we put into standard equality form (adding slack variables), and then into the tableau

x_1	x_2	x_3	x_4	x_5	z	b	basic variable
1/2	2 2	1	1	0	0	24	x_4
1	. 2	4	0	1	0	60	x_5
-6	i -14	-13	0	0	1	0	

We perform Simplex, and end up with the Tableau

x_1	x_2	x_3	x_4	x_5	z	b	basic variable
1	6	0	4	-1	0	36	x_1
0	-1	1	-1	1/2	0	6	x_3
0	9	0	11	1/2	1	294	

The optimal solution is therefore $\mathbf{x}^* = (36, 0, 6)$, with $z^* = 294$

- (a) How close to equality are the original constraints at this solution?
- (b) Intepret that "closeness" in the light of the value of the slack variables.
- (c) If we were to increase one of the constraint values, say $60 \rightarrow 61$, we could increase one of the slack variables which one and by how much?
- (d) Use the final row of the tableau to estimate the potential affect of this on the value of z^*

3. Calculations: Consider the LP with the Simplex Tableau:

x_1	x_2	x_3	x_4	x_5	x_6	z	b
0	1	-2	0	3	1	0	3
1	2	4	0	1	0	0	4
4	-2	1	1	1	0	0	2
-3	-1	-5	0	0	7	1	10

- (a) Explain why each of the following positions would not be a suitable choice for the next pivot position, if the Simplex Method were to be applied to the above tableau.
 - (i) Row 1, Column 1
 - (ii) Row 1, Column 3
 - (iii) Row 3, Column 4
 - (iv) Row 2, Column 1
 - (v) Row 2, Column 8
 - (vi) Row 4, Column 3
- (b) Nominate two distinct entries that *could* be selected as suitable pivot positions for the Simplex Method.
- (c) What happens to the value of the objective function if you pivot in Column 5?

4. Proof of the week:

Show that the following set of constraints is unbounded (no calculation is necessary).

$3x_1$	_	$3x_2$	+	$5x_3$	\leq	50
x_1			+	x_3	\leq	10
x_1	—	x_2	+	$4x_3$	\leq	20
				x_i	\geq	0

Without calculation, comment on the maximum of $z = 20x_1 + 10x_2 + x_3$, subject to these constraints.