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Occam's razor

Pluralitas non est ponenda sine neccesitate
William of Ockham (ca. 1285-1349)

m "Plurality should not be posited without necessity."

m alternative versions

= "Entia non sunt multiplicanda praeter

necessitatem”, or "Entities should not be
multiplied beyond necessity”

= "in vain we do by many which can be done by
means of fewer"

m "if fwo things are sufficient for the purpose of
truth, it is superfluous to suppose another”

m Principle of Parsimony
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Quidquid latine dictum sit, alutum viditur.
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Occam's razor

I remember my friend Johnny von Neumann
used to say, with four parameters I can fit an

elephant, and with five I can make him wiggle
his trunk.

Enrico Fermi

m You can always get a model that fits your data
better by using more parameters

m Is this really a better model?
m Does it explain more?

m What do the parameters mean?

m Can it be used elsewhere, or is the model very
specific to the data in question?
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Principle of Parsimony

Principle of Parsimony says that models with fewer
parameters are often better

m there is a tradeoff
m more parameters, better fit

m but can overfit to data, so more parameters make
model less universal, and mode specific to the
dataset

m more parameters make estimation harder
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Heavy-tails
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Heavy-tailed distributions

Heavy-tailed distributions occur in many places in
Internet traffic

min On/Off times

m in file sizes (on file systems, and web servers, and
observed being transfered on networks)

B in pause times between interactions

m sometimes in marginal distribution
Salient features

m high variability

m tail event, even though low probability have a large
impact on overall behaviour
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Heavy-tailed distributions

Sub-exponential examples

m log-Normal: Log-N(y,o0?)

1, IN(x) — )2
p(x) = cn/ﬁx_ exp(—(n();)02 ) ), x>0
EX] = exp(u+0°/2)
Var[X] = e+ (g% —1)

Obtained when log of the data follows a normal law
(e.g. if there is a product of errors instead of a

sum).
"Statistical Distributions”, M. Evans, N. Hastings and B. Peacock,
2nd Ed., John Wiley and Sons, Inc., New York, 1993.
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Heavy-tailed distributions

Sub-exponential examples
m Weibull: Weibull(b,c)

o0 = o[ (2)]. 520

o) = 1o
EX] = bl (ﬂ>

C

Var[X] = b*|l (E> T (Ey

>

C C

"Statistical Distributions”, M. Evans, N. Hastings and B. Peacock,
2nd Ed., John Wiley and Sons, Inc., New York, 1993.
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Heavy-tailed distributions

Sub-exponential examples

m Pareto x > a m shifted Pareto x >0
ca® ca®
p(x) = yC+1 p(x) = (X+a)ctL
an\ ¢ c
F0) = 1-(5) F(x) = F(x)=1-— (_a )
ca X+4+a
EIX] = —, ¢c>1 a
c—1 EX] = ——, c>1
c—1
Var [X] = ca’
(c—1)%(c—-2)°
cC>2

Otherwise known as a power-law distribution.
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Pareto example

1.5

== Pareto, a=1, c=1.5
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Pareto example
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The CCDF

Complimentary Cumulative Distribution Function (CCDF)
m Defined by CCDF =F¢(x) =1—F(x) = p{X > x}

m For a power-law distribution, the CCDF follows a
power-law

m e.g. Pareto has CCDF Fe(x) = (2)°
m exponent c is one larger than for the density
m e.g. Pareto has density p(x) = &;

m this is a more robust measurement than the density
function
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Log-log pictures

When we plot power-laws in log-log graph and they
appear as straight lines.

m Plot F¢(x) = (2)° on a graph with a log-y axis
m we see logF¢(x) = c(loga— logx).
m Take Y =logF°(x) and X = logx
m We get
Y =k—cX

m So the power law appears in the graph of (X,Y) (the
log-log graph) as a straight line with slope —c.
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Pareto example
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Pareto example
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Pareto distributions

Properties

m infinite variance: if ¢ <2 the mean of the Pareto
distribution is infinite.

m infinite mean: if ¢ <1 the mean of the Pareto
distribution is infinite.

m in general, if k= [c], then the first k—1 moments,

and central moments of the Pareto distribution will
be finite, and the kth moment (and larger moments)

will be infinite.
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Infinite moments

Infinite moments do not mean the value is infinite
m value is finite with probability 1

m mean is defined by an integral

E[X]:/prx(x)dx

m this integral doesn't necessary converge for all
distributions px(x)

® it may take infinite values
® it may be undefined

m this is OK!
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Truncation

m Why not truncate the distribution?
m this would make integral converge
m real data must surely be finite?

m truncation is problematic
m it introduces another parameter
m parameter is out in the tail

m hence VERY hard to estimate

m the distribution would have high variation
anyway

m more parsimonious model is just to allow the
heavy-tail

m statistical distribution is always just a model
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Implications of infinite moments

m estimates converge slowly or not at all

® infinite mean distribution — sample mean doesn't
converge, e.qg.

n
SRR
4 =1

Hence, we cannot use this to model the datal

m infinite variance distribution — sample variance
doesn't converge

m infinite variance distribution — sample mean
converges only slowly

m poor queueing behaviour
m we will discuss more later
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Pareto example
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Regular Variation

Mathematical generalization of a power-law distribution

m Asymptotically equivalent: two functions g(t) and
h(t) are asymptotically equivalent at to, if

. |h(t)
lim-——— =1
=t |g(t)]
and this is denoted by g(t) ~ h(t)
m Slowly varying: a function is slowly varying at to if,

forall x>0
. L
|Im—( )——1

m Regularly varying: a function is regularly varying at
o, with exponent p, if
h(t) ~ L(t)tP
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Regular Variation

Examples slowly varying functions (at )
m const, or log(t), or e P/t
Examples regularly varying (at «) distributions

m Pareto distribution L = const. Clearly a constant is
slowly varying.

m Inverse Gamma Distribution with density function

an—b/t
p(t) = bre(u)

t—(X—l

where L is given by a constant times e /*,
m any distribution with a power-law tail
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Heavy-tails

Unix file size survey (1994)

proportion of files

10° 10° 10" 10° 10° 10"
file size

http://ww. base. cont gordoni / uf s93. ht m

Modeling Telecommunications Traffic: Heavy-tails — p.24/46


http://www.base.com/gordoni/ufs93.html

Web data

Boston Uni study, 1995 (and studies since)

m derived from instrumented client traces

® running in the Boston University Computer Science
Department

m spanning the timeframe of 21 November 1994
through 8 May 1995.

m 9,633 Mosaic sessions
m 762 different users
m 1,143,839 requests for data transfer.

"Characteristics of WWW Client Traces”, Carlos A. Cunha, Azer
Bestavros and Mark E. Crovella, Boston University Department of
Computer Science, Technical Report TR-95-010, April 1995.
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Web data

Boston Uni study, 1995
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Broadband data

AT&T Broadband performed SNMP study of their
traffic at cable headends.

average customer load (1 minute rate)

Hone manTe SNMP 10 . . . E . c.:ustome.r load
byte counts -l PR | e
m customer bit rates z
S 107} *
m chatter below 6 kbps 3
m above 6 kbps, we see 107}
a power law .
10}
56000 bps :.
1 1.0 1(.30 10.00 1lO(I)OO 100.000 1e-;-0é le+
bps

"Pragmatic Modeling of Broadband Access Traffic", Matthew Roughan and
Charles R. Kalmanek, Computer Communications, vol 26/8, pp.804-816, 2003.

Modeling Telecommunications Traffic: Heavy-tails — p.27/46



Broadband data

AT&T Broadband performed SNMP study.

m one minute SNMP byte counts

m total aggregate at head-end
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Super computer job run lengths

CPU times of jobs on SAPACs CM5 (1999), 129625
records

5 hours

== duration of jobs
- straight line fit

10 10 10 10° 10* 10 10
job lenath (seconds)
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Ubiquity

We seem to see these heavy-tails quite a lot.

Why?

Modeling Telecommunications Traffic: Heavy-tails — p.30/46



Normal distributions

I know of scarcely anything so apt to impress the
imagination as the wonderful form of cosmic order
expressed by the "Law of Frequency of Error." The law
would have been personified by the Greeks and deified,if
they had known of it. It reigns with serenity and in
complete self-effacement,amidst the wildest confusion.
The huger the mob, and the greater the apparent
anarchy, the more perfect is its sway. It is the supreme
law of Unreason. Whenever a large sample of chaotic

elements are taken in hand and marshaled in the order
of their magnitude, an unsuspected and most beautiful

form of regularity proves to have been latent all along.
Sir Francis Galton, 1889
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Normal distributions

Why is the normal law so common?

mCentral Limit Theorem: The sum of a series of
random variables (satisfying certain conditions) will

converge to a hormal distribution.

So Normal/Gaussian distributions tend to appear
where we sum up lots of random variables, the
larger the mob, the closer to Gaussianity we get.

mInvariance: Various operations applied to a normal
distribution result in a normal distribution, e.g.
= multiplication by a scalar

m addition of two normal distributions
Hence, once we get a Normal distribution, it tends
to stick around.
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Normal distributions

Why don't we always get a normal law?

m some processes are not well modelled by the limit of
a sum of random variables

m other limits may apply

m Poisson distribution is the limit for rare events
in a large population

m [imit of the maximum of a set of random
variables

m non-linear transformation applied to the random
variables (which breaks the normal law).

m correlations in the data
m infinite variance (heavy-tails)
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Generalized Central Limit Theorem

Theorem: Generalized Central Limit Theorem
Let X1,X2,Xs,... be an independent, identically

distributed series of random variables. There exists a
constants a, > 0, and b, € R and a hon-degenerate
random variable Z, with

an(Xe +Xo 4 -+ Xn) — by 2 Z,

if and only if Z is a-stable, in which case a, =n=/® for
some a € (0,2].

m an a-stable is the generalization of the Gaussian, to
allow heavy-tails

m note the slower than CLT convergence rate
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Why you expect to see heavy-tails

For the same reasons we see Gaussians

mGeneralized Central Limit Theorem: The sum of a
series of random variables stable distribution
(under looser conditions than before).

mInvariance: Various operations applied to a normal
distribution result in a normal distribution, e.g.
= multiplication by a scalar
m addition of two stable distributions
® max also leads to a stable law

Actually, we might expect, given larger range of

invariant behaviour for stable laws that we see them
more often than Gaussians.
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How can we use this here?

m use heavy-tailed distributions in renewal processes
m On/Off process, use for On and Off times
m renewal reward process, use for reward

m Note that these are models of a single, or fixed
number of sources

m An alternative is the M/G/00 arrival process

m traffic sources arrive as a PP

m they stay around for a generally distributed
"service time"

m the service time would be chosen to have a
heavy-tail

= while sources are around, they generate traffic
at rate r
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Renewal models with heavy-tails

m most renewal theory still holds

m some special names used

m a renewal process with heavy-tailed
inter-renewal times = fractal renewal process

m Doubly stochastic PP driven by an On/Off
process with heavy-tailed On/Off times =
Fractal Binomial Noise Driven Poisson Process
(FBNDP)

m A doubly stochastic PP Shot noise point process
with inter-arrivals that are heavy-tailed =

Fractal Shot Noise Driven Poisson Process
(FSNDP)
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M/G/» model

m the number of customers in the system is
insensitive to the service time

m it just follows the simple Poisson distribution
e A"
Pn = nl
m hence the marginal traffic rate follows a Poisson

distribution with rate r times the number of
sources, as given by the above distribution.

m the service time would be chosen to have a
heavy-tail

m no impact on marginal distribution
m results in interesting correlations in the process

m once again, this is an aggregate traffic model
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Estimation of parameters

Simple methods for estimation of heavy-tailed
parameters

m regression of the CCDF on a log-log graph

m MLE
m Hill estimator
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MLE for Pareto parameters

Pareto density function: p(x;a,c) = $2;. The probability
of a particular set of IID samples {X;} from the
distribution is

n
p(Xa, ... Xala,0) = ] p(Xila,c)
=1

The Likelihood of a particular pair of parameters is
defined by

n
L(a,c) = p(a,clX,....,Xn) = | | p(a,c|X)
=1

We could equally maximize ’rh% Log-Likelihood
logL(a,c) Zlogp (a,c|Xi) = logc+cloga— (c+1)logX;

=1 =1
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MLE for Pareto parameters

We want to maximize this, so we take the derivatives
WRT aand c

oL i
- = ) c/a
=1
oL "1
— = ~ +loga— logX
> §C+ oga — log X;

n
_ 0 —) logX; —loga
-

The first is only zero for c =0, so we can't really use it,
instead we choose a = min; X;.
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MLE for Pareto parameters

Assume we have the estimate & for a, setting the
derivative & to zero results in

n
E—Zlogxi—loga = 0
C A4
=1
n n
— = ) log(Xi/a)
C :
=1
1 1<
c ﬁZ'Og(Xi/a)
=1
~1
C =

%Z l0g(X;/a)
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MLE for Pareto parameters

Given a Pareto distribution we form the Maximum
Likelihood Estimator (MLE) of the parameters by

a = minxX;
¢ = (%Zlogoq/a))

Using this is complicated by the fact that the body of
the distribution may not follow a power-law, so we have
to only apply to the tail.

m how do you choose the tail?

m Hill estimator allows you to visually see how much of
the tail you need to get a good estimate.
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Hill estimator

How it works: F¢(x) ~ (8)°

We can estimate F¢(x) u smg the order statistics X of

the data, e.g. F¢(i/n) = X(;,. Assume the body of The

distribution is not a power' law, but the tail, past the ith
order stat X does follow a power-law, then for x > X,

FC(x) O (@y

X

So we use the MLE estimator on the tail data, e.g. we
use the data Xi;1),...,Xn), where & = Xy. That is
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Hill estimator

A simple estimator of power-law tail parameter c
1.2

1.1

1

estimate of ¢
© o o
~ Q0 ©
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Hill estimator: matlab code

Matlab version

function [mle est, hill _est] = ..
hill estlmate(lnput data do_plot)

n = length(input_data);

K = (1:n);
order_stats = fliplr(sort(input_data’));
t = log(order_stats);
mle _est = (sum(t)/n). " (-1); % mle for Pareto dist.

hill est = cumsum(t(1:n-1))./k(1:n-1) - t(k(1l:n-1)+1);
1T (do plot)

plot(k(1:n-1), hill _est."(-1));
end
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