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Want to know demands from source to destination

Problem

Have link traffic measurements
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Example App: reliability analysis

Under a link failure, routes change
want to predict new link loads
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Network Engineering

What you want to do
a)Reliability analysis
b)Traffic engineering
c)Capacity planning

❖What do you need to know
Network and routing
Prediction and optimization techniques
? Traffic matrix
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Outline

❖ Part I: What do we have to work with – data sources
 SNMP traffic data
 Netflow, packet traces
 Topology, routing and configuration

❖ Part II:Algorithms
 Gravity models
 Tomography
 Combination and information theory

❖ Part III: Applications
 Network Reliability analysis
 Capacity planning
 Routing optimization (and traffic engineering in general)
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Part I: Data Sources
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Traffic Data
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Data Availability – packet traces

Packet traces limited availability – like a high zoom snap shot
• special equipment needed (O&M expensive even if box is cheap) 
• lower speed interfaces (only recently OC192)
• huge amount of data generated
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Data Availability – flow level data

Flow level data not available everywhere – like a home movie of the network
• historically poor vendor support (from some vendors)
• large volume of data (1:100 compared to traffic)
• feature interaction/performance impact
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Netflow Measurements

❖ Detailed IP flow measurements
 Flow defined by

3Source, Destination IP,
3Source, Destination Port,
3 Protocol,
3Time

 Statistics about flows
3Bytes, Packets, Start time, End time, etc.

 Enough information to get traffic matrix

❖ Semi-standard router feature
 Cisco, Juniper, etc.
 not always well supported
 potential performance impact on router

❖ Huge amount of data (500GB/day)
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Data Availability – SNMP

SNMP traffic data – like a time lapse panorama
• MIB II (including IfInOctets/IfOutOctets) is available almost everywhere
• manageable volume of data (but poor quality)
• no significant impact on router performance 
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SNMP

❖ Pro
 Comparatively simple
 Relatively low volume
 It is used already (lots of historical data)

❖ Con
 Data quality – an issue with any data source

3Ambiguous
3Missing data
3Irregular sampling

 Octets counters only tell you link utilizations
3Hard to get a traffic matrix
3Can’t tell what type of traffic
3Can’t easily detect DoS, or other unusual events

 Coarse time scale (>1 minute typically; 5 min in our case)
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Topology and configuration

❖ Router configurations
 Based on downloaded router configurations, every 24 hours

3Links/interfaces
3Location (to and from)
3Function (peering, customer, backbone, …)
3OSPF weights and areas
3BGP configurations

 Routing
3Forwarding tables
3BGP (table dumps and route monitor)
3OSPF table dumps

❖ Routing simulations
 Simulate IGP and BGP to get routing matrices
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Part II: Algorithms
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The problem

Want to compute the traffic xj  along
route j from measurements on the 
links, yi
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The problem

y = Ax

Want to compute the traffic xj  along
route j from measurements on the 
links, yi
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Underconstrained
linear inverse problem

y = Ax
Routing matrix

Many more unknowns than measurements

Traffic matrix

Link measurements
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Naive approach
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Gravity Model

❖ Assume traffic between sites is proportional to
traffic at each site

x1 ∝ y1 y2

x2 ∝ y2 y3

x3 ∝ y1 y3

❖ Assumes there is no systematic difference between
traffic in LA and NY
 Only the total volume matters
 Could include a distance term, but locality of information is

not as important in the Internet as in other networks
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Simple gravity model
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Generalized gravity model

❖ Internet routing is asymmetric
❖ A provider can control exit points for traffic going

to peer networks

peer links

access links
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Generalized gravity model

peer links

access links

❖ Internet routing is asymmetric
❖ A provider can control exit points for traffic going

to peer networks
❖ Have much less control over where traffic enters
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Generalized gravity model
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Tomographic approach

y = A x
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Direct Tomographic approach

❖ Under-constrained problem
❖ Find additional constraints
❖ Use a model to do so

 Typical approach is to use higher order statistics of the
traffic to find additional constraints

❖ Disadvantage
 Complex algorithm – doesn’t scale (~1000 nodes, 10000

routes)
 Reliance on higher order stats is not robust given the

problems in SNMP data
 Model may not be correct -> result in problems
 Inconsistency between model and solution
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Combining gravity model and tomography

tomographic constraints
    (from link measurements)

1. gravity solution

2. tomo-gravity solution
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Regularization approach

❖ Minimum Mutual Information:
 minimize the mutual information between source and

destination

❖ No information
  The minimum is independence of source and destination

3 P(S,D) = p(S) p(D)
3 P(D|S) = P(D)
3 actually this corresponds to the gravity model

 Add tomographic constraints:
3Including additional information as constraints
3Natural algorithm is one that minimizes the Kullback-Liebler

information number of the P(S,D) with respect to P(S) P(D)
• Max relative entropy (relative to independence)
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Validation

❖ Results good: ±20% bounds for larger flows
❖ Observables even better
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More results

tomogravity
method

simple
approximation

>80% of demands have <20% error

Large errors are in small flows
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Robustness (input errors)
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Robustness (missing data)
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Dependence on Topology
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Additional information – Netflow
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Part III: Applications
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Applications

❖ Capacity planning
 Optimize network capacities to carry traffic given routing
 Timescale – months

❖ Reliability Analysis
 Test network has enough redundant capacity for failures
 Time scale – days

❖ Traffic engineering
 Optimize routing to carry given traffic
 Time scale – potentially minutes
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Capacity planning

❖ Plan network capacities
 No sophisticated queueing (yet)
 Optimization problem

❖ Used in AT&T backbone capacity planning
 For more than well over a year
 North American backbone

❖ Being extended to other networks
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Network Reliability Analysis

❖ Consider the link loads in the network under failure
scenarios
 Traffic will be rerouted
 What are the new link loads?

❖ Prototype used (> 1 year)
 Currently being turned form a prototype into a production

tool for the IP backbone
 Allows “what if” type questions to be asked about link

failures (and span, or router failures)
 Allows comprehensive analysis of network risks

3What is the link most under threat of overload under likely
failure scenarios
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Example use: reliability analysis
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Traffic engineering and routing
optimization

❖ Choosing route parameters that use the
network most efficiently
In simple cases, load balancing across parallel

routes
❖Methods
Shortest path IGP weight optimization

3Thorup and Fortz showed could optimize OSPF weights
Multi-commodity flow optimization

3Implementation using MPLS
3Explicit route for each origin/destination pair
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Comparison of route optimizations
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Conclusion

❖ Properties
Fast (a few seconds for 50 nodes)
Scales (to hundreds of nodes)
Robust (to errors and missing data)
Average errors ~11%, bounds 20% for large flows

❖Tomo-gravity implemented
AT&T’s IP backbone (AS 7018)
Hourly traffic matrices for > 1 year
Being extended to other networks

http://www.maths.adelaide.edu.au/staff/applied/~roughan/
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Additional slides
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Validation

❖ Look at a real network
 Get SNMP from links
 Get Netflow to generate a traffic matrix
 Compare algorithm results with “ground truth”
 Problems:

3 Hard to get Netflow along whole edge of network
• If we had this, then we wouldn’t need SNMP approach

3 Actually pretty hard to match up data
• Is the problem in your data: SNMP, Netflow, routing, …

❖ Simulation
 Simulate and compare
 Problems

3 How to generate realistic traffic matrices
3 How to generate realistic network
3 How to generate realistic routing
3 Danger of generating exactly what you put in
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Our method

❖ We have netflow around part of the edge (currently)
❖ We can generate a partial traffic matrix (hourly)

 Won’t match traffic measured from SNMP on links

❖ Can use the routing and partial traffic matrix to
simulate the SNMP measurements you would get

❖ Then solve inverse problem
❖ Advantage

 Realistic network, routing, and traffic
 Comparison is direct, we know errors are due to algorithm

not errors in the data
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Estimates over time
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Local traffic matrix (George Varghese)

for reference
previous case
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