List of acronyms

A/D Analogue to Digital Convertor **AR** Auto-Regressive **ARMA** Auto-Regressive Moving Average **ARIMA** Auto-Regressive Integrated Moving Average CD Compact Disc **CFT** Continuous Fourier Transform **CGI** Computer Generated Imagery **CWT** Continuous Wavelet Transform DAC Digital to Analogue Convertor **DCT** Discrete Cosine Transform **DFT** Discrete Fourier Transform **DWF** Discrete Wavelet Filters **DWT** Discrete Wavelet Transform **EWMA** Exponentially Weighted Moving Average fARIMA fractional Auto-Regressive Integrated Moving Average **fBM** fractional Brownian Motion **FFT** Fast Fourier Transform **fGN** fractional Gaussian Noise **FIR** Finite Impulse Reponse **FS** Fourier Series FT Fourier Transform **IFFT** Inverse Fast Fourier Transform IFT Inverse Fourier Transform **IIR** Infinite Impulse Reponse JPEG Joint Photographics Experts Group LP Long Play (record) **LTI** Linear Time-Invariant (filter/system) MRA Multi-Resolution Analysis (or Approximation) **MA** Moving Average **RMS** Root Mean Square STFT Short Time Fourier Transform WFT Windowed Fourier Transform

Some terminology

Some frequently used terminology (see notes for details)

- **dB:** Decibels (defined WRT a reference power level p_{ref}) by $dB = 10 \log_{10} \frac{p}{\frac{p_{ref}}{p_{ref}}}$. Note that $p = m^2$, so we may write $dB = 20 \log_{10} \frac{m}{\frac{m_{ref}}{m_{ref}}}$
- the **Power Spectrum** of a signal f(t) is $|F(s)|^2$, where F(s) is the Fourier transform.
- Nyquist: Assume the spectrum of the signal is zero above a critical frequency f_c . For sampling frequencies $f_s > 2f_c$, aliasing dowsn't occur. If $f_s < 2f_c$ aliasing may become a problem.
- **Dynamic range:** expresses the range of values we can represent in our digital format. Representation with *b* bits (ignoring the sign bit), the dynamic range is roughly 6dB per bit.
- Hz Unit of frequency. 1 Hz = 1 cycle per second
- linear systems and filter terminology: lecture 5-6
 - linear, time-invariant, invertible, memory, causal, stability
 - IIR, FIR
 - high-pass, low-pass, stop-band,
 - pass-band, stop-band attentuation, Gibb's phenomena (see Figure Lecture 05).
 - block diagram, tap
- white noise: a random process with a flat power-spectrum.
- spectral density: expected power-spectrum of a random process, equal to the Fourier transform of autocovariance.

Some math notation

 $\langle f,g\rangle$ is the inner product of f and g. This can be defined in various ways, but unless otherwise specified we use the definition

$$\langle f,g \rangle = \left[\int_{-\infty}^{\infty} f(t)g^*(t) \, dt \right]^{1/2}$$

The norm $\|f\| = \langle f, f \rangle$ can be likewise redefined, but we shall typically use the L^2 norm based on the inner product above.

 $L^p(\mathbb{R})$ = the set of functions of the real line $f : \mathbb{R} \to \mathbb{R}$ for which the L^p norm exists, and is finite, i.e.

$$\|f\|_p = \left[\int_{-\infty}^{\infty} |f(t)|^p dt\right]^{1/p} < \infty$$

 C^n = the set of functions with n continuous derivatives

Functions with **compact support** are zero outside a compact set (e.g. an interval $[-a, b] \in \mathbb{R}$). The **support** of a function is the set closure of the set where the function takes non-zero values.

Common definitions

Complex numbers: x = a + ib, where $i = \sqrt{-1}$

- real part of x is $\Re(x) = a$
- imaginary part of x is $\Im(x) = b$
- complex conjugate $x^* = a ib$
- Hermitian of a complex matrix $A = [a_{ij}]$ is $A^H = [a_{ji}^*]$.
- identities

$$-e^{ix} = \cos(x) + i\sin(x)$$

- $\cos(x) = \frac{1}{2} (e^{ix} + e^{-ix})$
- $\sin(x) = \frac{1}{2i} (e^{ix} - e^{-ix})$

Simple signals

- unit step: $u(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$
- rectangular pulse: r(t) = u(t + 1/2) u(t 1/2).
- sign (signum) function: $sgn(t) = \begin{cases} -1, & t < 0\\ 1, & t > 0 \end{cases}$
- Delta "function" $\delta(t)$ definition

$$\delta(-t) = \delta(t)$$

$$\int_{-\infty}^{t} \delta(s) \, ds = u(t)$$

$$\int_{-\infty}^{\infty} f(t) \delta(t - t_0) \, dt = f(t_0)$$

Signal characteristics

- even: x(-t) = x(t)
- odd: x(-t) = -x(t)
- any signal $x(t) = x_{\text{even}}(t) + x_{\text{odd}}(t)$ where

$$x_{\text{even}}(t) = \frac{1}{2} [x(t) + x(-t)] \text{ and } x_{\text{odd}}(t) = \frac{1}{2} [x(t) - x(-t)]$$

- Hermitian: $x(-t) = x^*(t)$
- periodic: x(t+nT) = x(t) for any n = 1, 2, ..., and some T > 0.

The minimal value $T = T_0 > 0$ for which periodic signal x(t + nT) = x(t) for any n = 1, 2, ..., and some T > 0 is called the fundamental period, and has units of seconds.

T = period measured in seconds

$$f = 1/T =$$
 frequency measured in Hz

 $\omega = 2\pi f$ measured in radians per second

Simple transformations

• time reversal y(t) = x(-t)

- time scaling y(t) = x(at)
- time shift $y(t) = x(t t_0)$
- amplitude scaling y(t) = Ax(t)
- amplitude shift y(t) = B + x(t).
- for complex signals x(t) = a(t) + ib(t)

– real part
$$\Re(x(t)) = a(t)$$

- imaginary part $\Im(x(t)) = b(t)$
- conjugate $x^*(t) = a(t) ib(t)$
- magnitude $|x(t)| = \sqrt{a(t)^2 + b(t)^2}$
- phase angle $\theta(t) = \arctan(b(t)/a(t))$
- $-x(t) = |x(t)|e^{i\theta(t)}$

Fourier series: We can write a periodic function as an (infinite) discrete sum of trigonometric terms, e.g. period 2π

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$$
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx$$
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, dx$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) \, dx$$

Fourier transform: $F(s) = \int_{-\infty}^{\infty} f(t)e^{-i2\pi st} dt$ Inverse Fourier transform: $f(t) = \int_{-\infty}^{\infty} F(s)e^{i2\pi st} ds$

Example FTs	
Function	Transform
$\delta(t)$	1
$\delta(t-t_0)$	$e^{-i2\pi t_0 s}$
r(t)	$\operatorname{sinc}(s)$
$e^{- t }$	$\frac{2}{4-2-2+1}$
$e^{-\pi t^2}$	$e^{-\pi s^2}$
1	$\delta(t)$
$e^{i2\pi s_0 t}$	$\delta(s-s_0)$
$\operatorname{sinc}(t)$	r(s)

Discrete Fourier Transformation

A signal x(n), with N data points, has DFT

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-i2\pi kn/N}$$

Inverse DFT

$$x(n) = \frac{1}{N} \sum_{n=0}^{N-1} X(k) e^{i2\pi kn/N},$$