
S
O

LU
TI

O
N

S

Examination in School of Mathematical Sciences

Semester 2, 2010

006128 Variational Methods and Optimal Control

APP MATH 3010

Official Reading Time: 10 mins
Writing Time: 180 mins
Total Duration: 190 mins

NUMBER OF QUESTIONS: ?? TOTAL MARKS: ??

Instructions

• Answer ALL questions.

• Begin each answer on a new page.

• Examination materials must not be removed from the examination room.

Materials

• 1 Blue books are provided.

• Calculators are NOT permitted.

• 2 double sided pages of handwritten notes are allowed.

DO NOT COMMENCE WRITING UNTIL INSTRUCTED TO DO SO.
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1. Solutions:

problem autonomous degenerate dependent ony

F{y} =

∫ b

a

√

1 + y′2

x
dx no no no

F{y} =

∫ b

a

sin(y)y′ + xy′ dx no yes yes

F{y} =

∫ b

a

sin(xy′) dx no no no

F{y} =

∫ b

a

yy′(1 + y′) dx yes no yes

[12 marks]

Please turn over for page 3
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2. Solution:

The Euler-Lagrange equations are

d

dx

∂f

∂y′
− ∂f

∂y
=

d

dx

[

3xy′2
]

= 3y′2 + 6xy′y′′ = 3y′(2xy′′ + y′) = 0

[2 marks]

So eithery′ = 0 or 2xy′′ + y′ = 0. The first case has solution

y = k,

for constantk. Clearly this solution doesn’t fit the end points, and so we can exlude it from
consideration. [1 marks]

The second DE can be tackled by changing varible tou = y′ and dividing by2x1/2 to get

x1/2u′ + x−1/2u/2 = 0,

which is just
d

dx
x1/2u = 0.

The solution is
x1/2u = const.

Substitutingy′ = u, and rearranging we get

y′ = const× x−1/2

y = c1x
1/2 + c2.

NB: interestingly, the solutiony = k is a special case of this extremal. [4 marks]

Substituting the end points, we getc2 = 0 andc1 = 1, so the solution is

y = x1/2.

[1 marks]

alternative solution:

Note that the functionf in the integral doesn’t depend ony, so we can write the Euler-Lagrange
equations

∂f

∂y′
= 3xy′2 = const

The above has two cases: (1) the constant is zero, soy′ = 0 and hence

y = const

and (2)

y′ =
const√

x
,

which we can integrate to get
y′ = c1

√
x+ c2,

as before.

Please turn over for page 4
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3. Solutions:

(a) There are two dependent variables(x, y) and so two Euler-Lagrange equations:

d

dt

∂f

∂
.
x
− ∂f

∂x
= 0

d

dt

∂f

∂
.
y
− ∂f

∂y
= 0.

[2 marks]

(b) The E-L equations for this case will be

d

dt

.
x

√.
x
2
+

.
y
2

= 0

d

dt

.
y

√.
x
2
+

.
y
2

= 0.

We can directly integrate to get

.
x

√.
x
2
+

.
y
2

= c1 (1)

.
y

√.
x
2
+

.
y
2

= c2. (2)

Take the case where
.
y 6= 0 and divide (??) by (??) (we can solve by dividing in the other

direction if
.
y = 0), and we get (by the chain rule)

dx

dt
/
dy

dt
=

dx

dy
= c.

The result is a straight line. [4 marks]

(c) The functional described in the previous problem gives the distance of a path(x(t), y(t)),
and so finding the shortest path involves minimising this integral, and as expected the solu-
tion is a straight line.

[1 marks]

The transversality condition will require the extremal to meet the liney = −x/2 + 6 at a
right angle. The slope of the curve is−1/2, and so the slope of the extremal is 2, and as it
passes through the origin it must have equation

y = 2x

[2 marks]

The following figure shows the result:

Please turn over for page 5
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12

x

y

6

y=2x

y = −x/2 + 6

[1 marks]

Please turn over for page 6



S
O

LU
TI

O
N

S

Variational Methods and Optimal Control Page 6 of ??

4. Solution:

(a) The arclength of the curve can be written

F{y} =

∫ 1

−1

√

1 + y′2 dx.

Including the isoperimetric constraint via a Lagrange multiplier µ we seek extremals of the
functional

J{y} =

∫ 1

−1

√

1 + y′2 + µy
√

1 + y′2 dx.

Takeλ = 1/µ and we get

λJ{y} =

∫ −1

−1

(λ+ y)
√

1 + y′2 dx.

which is exactly the same as the functional used in finding theshape of a hanging wire of
lengthL, and so the result will be a catenary.

[2 marks]

(b) As noted above, the form of the solution is a catenary of fixed length, which has solution

y(x) = c1 cosh((x− c2)/c1)− λ,

However, as the solution end points are symmetric, i.e.,(−1, y0) and(1, y0), the constant
c2 = 0 and the solution takes the form

y(x) = c1 cosh(x/c1),

where in the standard catenary problemλ andc1 are chosen to solvey0 = c1 cosh(1/c1)−λ,
and to fix the length to beL. However, here, the constraint it thatG{y} = A, which gives

G{y} =

∫ 1

−1

y
√

1 + y′2 dx

=

∫ 1

−1

(c1 cosh(x/c1)− λ) cosh(1/c1) dx

= c1 +
c21
2
sinh(2/c1)− 2λc1 sinh(1/c1),

and so we solve this on conjunction with the end-point condition. The solution is obtained
numerically.

[2 marks]

(c) Without the constraint, the geodesic would obviously be a straight line. Mathematically, we
can see that the constraint changes the objective function we seek to optimize, and hence it
is not surprising that the shape of the curve changes. More intuitively though, the constraint
limits the types of curves that can be considered as viable alternatives. Clearly, straight
lines are excluded by this constraint (in all but limiting cases).

[2 marks]

Note: In general there is a reciprocal relationship between optimization objective and isoperi-
metric constraint. We can usually exchange their roles (providedλ 6= 0).

Please turn over for page 7
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5. Solutions:

(a) The constraint is anon-holonomic. [1 marks]

(b) The Lagrange multiplier isλ(x), and the new functional is

J{y, z} =

∫ x1

x0

y2 + z2 + λ(y′ − z + y) dx.

[1 marks]

(c) The Euler-Lagrange equations are

d

dx

∂h

∂y′
− ∂h

∂y
= 0,

d

dx

∂h

∂z′
− ∂h

∂z
= 0,

d

dx

∂h

∂λ′
− ∂h

∂λ
= 0,

[2 marks]
which give

2y + λ− λ′ = 0, (3)

2z − λ = 0, (4)

y′ − z + y = 0. (5)

[2 marks]
NB: I will not ommit marks if (??) is absent as it is just the original constraint.

(d) Equation (??) gives
λ = 2z,

substitute into the first equation and we get

2y + 2z − 2z′ = 0.

Differentiate and rearrange and we get

y′ = −z′ + z′′,

and we substitute these two into into the last equation to get

y′ − z + y = −z′ + z′′ − z − z + z′ = 0,

which simplifies to the linear homogenous ODE

z′′ − 2z = 0.

This has solutions
z = c1e

√
2x + c2e

−
√
2x.

We also know

y = −z + z′ = c1(−1 +
√
2)e

√
2x + c2(−1−

√
2)e−

√
2x,

which we can see satisfies the constraints.
We would need boundary conditions to determine the values ofc1 andc2. [6 marks]

Please turn over for page 8



S
O

LU
TI

O
N

S

Variational Methods and Optimal Control Page 8 of ??

6. Solutions

(a) The Euler-Poisson equation is

d2

dx2

∂f

∂y′′
− d

dx

∂f

∂y′
+

∂f

∂y
= 2

d2

dx2
y′′ + 2y = 0.

The resulting simplified DE is
y(4) + y = 0.

[3 marks]

(b) If we introduce the new variableu, with the non-holonomic constraintu = y′, then we can
rewritey′′ = u′ in the integral, and include the constrait via a Lagrange multiplier function
λ(x) to get a new functional to minimize

J{y, u, λ} =

∫

h(y, u, λ, y′, u′, λ′) dx =

∫

u′2 + y2 + λ(y′ − u) dx.

[2 marks]
The Euler-Lagrange equations are

d

dx

∂h

∂y′
− ∂h

∂y
= 0,

d

dx

∂h

∂u′
− ∂h

∂u
= 0,

d

dx

∂h

∂λ′
− ∂h

∂λ
= 0,

which gives the three linear ODEs

λ′ − 2y = 0, (6)

2u′′ + λ = 0, (7)

y′ − u = 0. (8)

[3 marks]

(c) The three DEs can be simplified as follows: take the second derivative of (??) to obtain

y(3) − u′′ = 0.

Now substituteu′′ derived from (??) to get

y(3) + λ/2 = 0.

Differentiate this once more
y(4) + λ′/2 = 0,

and substituteλ′ derived from (??) and we get

y(4) + y = 0.

[3 marks]
Soyes, the solutions are the same.

[1 marks]

Please turn over for page 9
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