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Did you bring your duck?

Suddenly, Professor
Liebowitz realizes he
has come to the seminar
without his duck.

Larson, 1989
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Introduction
What is the point of this course?
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Motivation

◮ Imagine a field containing patches
of gold.

◮ Collect the most gold

◮ We want to choose bestpath

◮ But the path length is limited.
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Gold example (part ii)

◮ The gold collected on the path is theintegral of the gold at each
point.

◮ The length of the path isfixed.

◮ We are maximizing an integral over a path forall possible paths.

◮ Maximizing a function of a function (afunctional).
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The catenary

Consider a thin, uniformly-heavy, flexible cable suspendedfrom the top of
two poles of heighty0 andy1 spaced a distanced apart. What is the shape
of the cable between the two poles?
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What is the difference if the cable is coiled at the base of thepoles and is
free to move up and down via a pulley?
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Brachystochrone problem

“Did Bernoulli sleep before he found the curves of quickest descent? ”,
Peter Parker, Spiderman II

Find the shape of a wire along which a bead, initially at rest,slides from
one end to the other as quickly as possible under the influenceof gravity.

◮ endpoints are fixed

◮ motion is frictionless

Can think of as the “optimal slippery dip”
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Brachystochrone problem
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Brachystochrone solution
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Brachystochrone history

◮ problem posed by Johann Bernoulli (1696)

◮ Newton, Liebnitz, Huygens, Bernoulli’s

◮ Euler developed method to solve it that was generalizable

◮ Jacob first to solve?

◮ Johann, “Ah, I recognize the paws of a lion”

◮ Christiaan Huygens discovered cycloid property

A bead sliding down a cycloid generated by a circle of
radiusρ under gravityg reaches the bottom afterπ

√

ρ/g
regardless of where the bead starts. Hencecycloid =
isochrone
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Cycloid generation
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Geodesics

Geodesic= shortest path

◮ shortest path between two points on a plane

◮ shortest path between two points on a sphere

◮ shortest path on an arbitrary manifold onIRn
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Dido’s problem

Isoperimetric problem: what shaped curve encompasses the largest area
given a fixed perimeter.

◮ 200 B.C. proof by Zendorus (but flawed)

◮ Steiner proved that “if it exists” its a circle

◮ Weierstraβ proved usingCalculus of Variations
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Control problems

Control of systems is critical in modern life

◮ Mech.Eng: Design of active suspension

◮ Medicine: Drug delivery to minimize harmful side-effects

◮ Aerospace: optimize rocket thrust (to minimize fuel consumption)

◮ Economics: maximize utility of consumption (vs savings)

◮ Environment: optimal harvesting (say of fish)

◮ Minimizing cost of A/C

Optimal control is the best (cheapest, fastest, smoothest,...) we can do.
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Other examples

◮ Design of vehicle profile that minimizes drag

◮ Finding shapes of soap bubbles
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Revision
Extrema of functions of one variable.

“Nothing takes place in the world whose meaning is not that ofsome
maximum or minimum.”

L.Euler
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Revision

Calculus of variations is concerned with maximization (minimization)

We are going to maximize (minimize) functionals, not functions

Let us first revise maximization (minimization) of function
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Maxima and minima

Functions of one variable:

◮ Let x ∈ [a,b] and f (x) : [a,b]→ IR

◮ If there is a pointxmin such thatf (xmin)≤ f (x) for all x ∈ [a,b], then
xmin is called aglobal minima of f (x) in [a,b].

◮ The set of pointsx such thatf (x) = f (xmin) is called theminimal
set.

◮ If there is an interior pointx ∈ (a,b) such that there exists aδ > 0
with f (x)≤ f (x̂) for all x̂ ∈ (x−δ,x+δ), thenx is called alocal
minimum of f (·).

◮ similar definitions apply for maxima, note maxima off (x) are the
minima of− f (x)
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Maxima and minima: example 1
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Maxima and minima: example 2

◮ f (x) = 1+ x2 on [−1,1]

◮ global minimum atx = 0

◮ local minimum atx = 0

◮ maximal set{−1,1}
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Maxima and minima: example 3

◮ f (x) = x on [−1,1]

◮ global minimum atx =−1

◮ not a local min. because not
an interior point

◮ global maximum atx = 1
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Maxima and minima: example 4

◮ f (x) = 1+ x2− x4 on [−1,1]

◮ global minimum atx =−1
andx = 1

◮ local minimum atx = 0.
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Maxima and minima: example 5

◮ f (x) = |x| on [−1,1]

◮ global minimum atx = 0

◮ local minimum atx = 0
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How to find maxima and minima

Theorem 1: Let f (x) : [a,b]→ IR be differentiable in(a,b). If f (·) has a
local extrema atx then

d f
dx

= f ′(x) = 0

Proof: The derivative is given by

f ′(x) = lim
x̂→x

f (x̂)− f (x)
x̂− x

Supposex is a local minima, then∃δ > 0 such that
x̂ ∈ (x−δ,x+δ)⇒ f (x̂)> f (x), hence the numerator> 0. The
denominator changes sign at ˆx = x. Differentiability implies the left and
right hand limits exist and are equal, and hencef ′(x) = 0.
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Sufficient conditions

Theorem 2: Let f (x) : [a,b]→ IR be twice differentiable in(a,b).
Sufficient conditions for a local minimum atx are

f ′(x) = 0 and f ′′(x)> 0

Proof: see following.
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Some useful theorems

◮ Mean Value Theorem:Let x0 < x1, and f (·) be a continuous
function in[x0,x1], and differentiable in(x0,x1), then∃ξ ∈ (x0,x1)
such that

f (x1) = f (x0)+(x1− x0) f ′(ξ)

◮ Taylor’s theorem: Let f (·) be a function whose firstn derivatives
exist and are continuous in the interval[x0,x1], and f (n+1)(x) exists
for all x ∈ (x0,x1), then∃ξ ∈ (x0,x1)

f (x1) = f (x0)+(x1− x0) f ′(x0)+
(x1− x0)

2

2
f ′′(x0)+ · · ·

+
(x1− x0)

n

n!
f (n)(x0)+

(x1− x0)
n+1

(n+1)!
f (n+1)(ξ)
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Sufficient conditions

Theorem 3: Let f (x) : [a,b]→ IR have derivatives of all orders, then a
necessary and sufficient condition for a local minima is thatfor somen

f ′(x) = f ′′(x) = · · ·= f (2n−1)(x) = 0 and f (2n)(x)> 0

Proof: Taylor’s theorem, where ˆx− x = ε

f (x̂) = f (x)+ ε f ′(x)+ · · ·+
ε2n−1

(2n−1)!
f (2n−1)(x)+

ε2n

(2n)!
f (2n)(x)+O(ε2n+1)

Then

f (x̂)− f (x) =
ε2n

(2n)!
f (2n)(x)+O(ε2n+1)

> 0 for small enoughε
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Classifying extrema

Assume thatf ′(x) = 0

◮ local maximaf ′′(x)< 0

◮ local minima f ′′(x)> 0

◮ turning point f ′′(x) = 0, and f (3)(x) 6= 0

◮ + a lot of higher order conditions

Call all points with f ′(x) = 0 the set ofstationary points
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Conclusion

We have looked at 1D local maxima and minima
We need to generalize this

◮ next lecture, to functions ofN variables

◮ then, to functions of functions (∞ variables)
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Extra bits
Some notation and definitions
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Notation

◮ [a,b] is the closed interval, i.e. the set{x ∈ IR|a ≤ x ≤ b}

◮ (a,b) is the open interval, i.e. the set{x ∈ IR|a < x < b}

◮ (a,b] is the set{x ∈ IR|a < x ≤ b}

◮ f (x) : [a,b]→ IR denotes a function that maps the set[a,b] to a real
number.

◮
dn f
dxn = f (n)(x) denotes thenth derivative off (x).
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Synonyms

◮ the global minimum is sometimes called a strong minimum

◮ a local minimum is sometimes called a weak minimum

◮ the local extrema are the collection of local minima and maxima
We sometimes abuse notation to include stationary points inthe set
of extrema.
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Useful Definitions: continuity

◮ a function f (x) is continuousat x0 iff the left and right limits atx0

exist and are equal, i.e.,

lim
x→x−0

f (x) = lim
x→x+0

f (x)

otherwise it is said to have adiscontinuity.

◮ We say a function is continuous on an interval if it is continuous at
every point inside the interval and the limits exist at the boundaries.

◮ A function ispiecewise continuouson an interval if it has at most
finite number of discontinuities.
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Useful Definitions: differentiability

◮ A function isdifferentiable at x0 if its derivative exists, and is
continuous atx0, i.e., the following limit exists and is the same from
both directions

lim
x→x0

f (x)− f (x0)

x− x0

◮ We say a function is differentiable on an interval if it is
differentiable at every point inside the interval and the limits exist at
the boundaries.

◮ A function ispiecewise differentiableif the derivative has at most a
finite number of discontinuities.

◮ A function istwice differentiable if its second derivative exists and
is continuous.

Variational Methods & Optimal Control: lecture 01 – p.34/37

Useful Definitions

◮ We also eliminate from consideration functions whose derivative
changes sign an infinite number of times in a finite interval.
⊲ e.g. sin(1/x)
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Notation

We define thedel or grad operator by

∇ =

(

∂
∂x

,
∂
∂y

,
∂
∂z

)

So, given a scalar functionφ(x,y,z), then∇φ is a vector function

∇φ =

(

∂φ
∂x

,
∂φ
∂y

,
∂φ
∂z

)

Given a vector functionf(x,y,z) = ( f1, f2, f3) then we define thediv
operator divf = ∇ · f, e.g.

∇ · f =
(

∂
∂x

,
∂
∂y

,
∂
∂z

)

· ( f1, f2, f3) =
∂ f1

∂x
+

∂ f2

∂y
+

∂ f3

∂z
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Notation

We can also use del to define thecurl operator using a cross-product
curl= del×, e.g.

curl f = ∇× f

TheLaplacian operator, or del-squared operator of a scalar function (of
(x,y,z)) is defined by

∇2φ = ∇ · (∇φ) =
∂2φ
∂x2

+
∂2φ
∂y2

+
∂2φ
∂z2
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