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Constrained maxima and minima

Problem: find the minimum (or maximum) &fx) for x € R" subject the
the constraints
g(x)=0, i=1,....m<n

The conditions define a subsebo& R" called a manifold.
Solution require$ agrange Multipliers. Minimize (or maximize) a new
function (ofm+ n variables)

NOA) = £+ 3 M),

whereA; are the undetermined Lagrange multipliers.
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Revision, part iii

Constrained extrema and Lagrange multipliers.
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Why Lagrange multipliers?

Maximize f (x) subject tog(x) =0

h(x) = f(x) +Ag(x).
Sodh/dx = 0 implies thad f /0x; = —Adg/0x;
Assumex is an extremal, which satisfies the constraint, considexfalie
X 4 0x in the neighborhood of that also satisfy the constraint (i.e.
g(x+dx) = g(x) = 0), we also know from Taylor’s theorem that

g(x 4 8x) = g(x) + &' Og+ O(dx?)

which implies that for smalbx
o' Og=0

If we takedf /0x = —Adg/dx then
X'Of =0

Variational Methods & Optimal Control: lecture 03 — p.4/36




Constrained maxima example 1

Find the rectangle with fixed perimeter, and max. area.
E.G. the maximum of (xq,X2) = X1%2 subject tax; + X2 = 1, Xg,%2 > 0.
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Constrained maxima ex. 1, a bit more

Maximizeh(x, X2,A) = XgX2 + A (X + X2 — 1)

0%h 9%h
% oo ]_[o 1]

9%h 8%h
aXlaXZ a_XS 1 o

This is not positive definite!
However, note that; +x, = 1, so the only possible perturbation vectors

have the fornm(dx, —ox)".
01 ox
— = _28x%
(8X, 6x)[1 Oll—éx] ox~ < 0

Hence, given the constraints R, for all possible x, f(x+ &x) < f(x),
and we have a local maximum.
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Constrained maxima ex. 1, solution

Maximize h(x, X2, A) = X1X2 + A (X1 + X2 — 1)
Set partial derivatives to be zero

oh _dh _oh

o A
oh
% = X2+)\ = 0
% - X]_-I-)\ — O
ﬁ = X+X%—-1 = 0

Solutionx; =x; =1/2,A = —-1/2.
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Constrained maxima example 2

Largest area rectangle inscribed in a circle diameter 1.
Maximize f (X, X2) = X1Xo Subject tax +x3 = 1, %, %, > 0.

h= XX + A +x5 — 1)

oh
a_Xl == X2+2)\X1
oh
6_)(2 == X1+2)\X2
oh
a == X%—FX%—l
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Constrained maxima ex. 2, solution

Subtract 2x (1) from (2) and we get
x1(1-42\%) =0

SoA = +1/2. To satisfyx;,x, > 0,A = —1/2, and hence; = x,. To
satisfy the constraint

X| = Xp = 1/\/2

Solution is a square.
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Constrained maxima ex. 3, solution

Subtract 2/a?x (5) from (4) and we get

A2

SoA = +ab/2. To satisfyx,y > 0, A = —ab/2, and hence = (a/b)y. To
satisfy the constraint

x=a/V2, y=Db/V2.

Solution is now a rectangle.
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Constrained maxima example 3

Largest area rectangle inscribed in an ellipse.
Maximize f (x,y) = xy subject tox?/a? +y?/b? = 1, x,y > 0.

h=xy+A(x?/a?+y?/b? — 1)

g—z = y+2\x/a
?)_; = X+2\y/b?
g—;‘ = /bR yPla 1
a\sqrt2
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Constrained maxima example 4

Maximize f (Xg, X2, X3) = X1X2X3 Subject tox X + X1X3 + X2X3 = 1, and
X1+X+x3=3
h = XgXaX3 + A (XeX2 + X1 X3 4 XoX3 — 1) + (X1 + X2 +- X3 — 3)

oh

— = XX3+AX+x3)+H = O
e XiXg+A(X1+x3)+H = O
2
oh
o~ = Xet+tA(utx)+H = 0
5
% = XXo+XX3+XX3—1 = 0
m X1+ X2 +X3—3 =0
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Constrained maxima and minima

Problem: find the minimum (or maximum) éfx) for x € R" subject to
the constraints

g(x)=0, i=1....m<n

The conditions define a subsetof R" called a manifold.

Solution require$ agrange Multipliers. Minimize (or maximize) a new
function (ofm+ n variables)

NOA) = 00 + 3 M),

where; are the undetermined Lagrange multipliers.
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Example: inequality constraints

Example: the largest area square we can inscribe in a ualg cir

Earlier, we assumed that +y? = 1, but really the constraint says that
X2 4y? < 1.

However, the max area square (without the constraint) arigle
unbounded, and so doesn't satisfy the constraint, so weftodke square
that lies on the boundaiy(x,y) = X2 +y? — 1 = 0, which we solve (as
before) to gek =y =1/v/2.
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Inequality constraints

What if we have a constraint, sgyx) > 0?

For one constraint, its easy, we just find the max (min), aed ttheck the
constraint. If its satisfied, then we are OK, but if not, thelgll max (min)
is on the boundarg(x) = 0, so now solve the constrained problem.
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Slack variables

An alternative is to introduce slack variables.

For each inequality constraint, rewrite@$x) > 0. We introduce a slack
variablea;j, and rewrite the constraint as

gi(x)—af =0

Thea? term is automatically positive.

Then add in a standard Lagrange multiplier for this constyaiut note
that in our maximization problem we now have the varialles, andA.
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Example

Maximize X subject tax < 10.
Introduce slack variabla, and set the constraint to be & — a2 = 0.
Now add a standard Lagrange multiplier, to maximize

h(x,a,\) = 3x+ A (10— x— a?)

o = -2« =0 =a =0
oh — 10-x—a2 = 0 =x = 10

Solution(x,a,A) = (10,0, 3)
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Vector spaces and function spaces

A Vector Space Sis a collection of objects (vectorX),Y, ..., along with
two operators (addition, and scalar multiplication) tisat i

» closed under addition, e.g.
ForallX,Y € Swe haveX +Y € S
» closed under scalar multiplication, e.g.

ForallX € S andk € Rwe havekX € S

Variational Methods & Optimal Control: lecture 03 — p.19/36

Revision, part iv

Vector space notation.
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Vector spaces and function spaces

The operators have to satisfy various properties

commutivity of addition X+4+Y =Y +X
associativity of addition X+ (Y+2Z)=(Y+X)+Z
additive identity 30 such thak +0= X
additive inverse  VX,3— X such thaiX 4+ (—X) =0
distributivity a(X+Y)=aX+aY
distributivity (a+B)X =aX+pX
associativity of scalar mult.  (ap)X = a(BX)
multiplicative identity 31 such that X = X
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Examples

» example 1: the set of vectorg € R", with the standard vector
addition and scalar multiplication.

» example2: the set of all continuous functions on the interval
[Xo0,X1], denotedC[Xo, X1) = {f : [Xo,X1] — R| f is continuous;,
with addition and scalar multiplication defined by

(F+9) () =f(x)+9(x), (af)(x)=af(x)

foranya € R, andf, g € C[xg, Xq].

» example 3: The set of square integrable functidrfsis the set of
functionsf : R — R for which [ f(x)2dx exists and is finite, with
the same definition of sum and scalar product a<for
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Examples

» example 1: the vector spacR" can be equipped with the Euclidean

norm defined byix|. = /[, X?. Alternatively we could use the
norm defined by{x||1 = 3. x|

» example2: the vector spac€[xy, x| can be equipped with norms
I lleo = SUBe o ) | F (X
I1Flla= [ |(x)|dx

Ifll2=/fe f(x)2dx

» example 3: L? can be equipped with noriif||, = /[, f(x)2dx
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Normed spaces

More structure is needed, in particular a way of measurigtpdces. A
norm on a vector spac8is a real-valued function(al) whose value at
x € Sis denoted|x|, and has the properties

Xl >0
[X|| =0iff x=0
llax|| = allx]|

X+l <X+ |yl (the triangle inequality)

A vector space equipped with a norm is called a
normed vector space.
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Examples (cont.)

» example4: DefineC"[xo, X1] to be the set of functions that have at
leastn continuous derivatives oo, X;|. Note

C"[Xo,X1] C C" *[x0,Xq] C -+ C CH[x0, %] C C[Xo,X4]

C"[xo,X1] is @ vector space, and ||, || f||1, and| f | > are all possible
norms on this space. Other norms

j
[flloj= sup [f¥(x)]

K=0XE[X0,X1]

for j <nonC"[xg,X].
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Norms

» denote a normed vector spa&| - ||).

» Two norms|| - ||a and| - ||p are said to be equivalent if there exists
positive numberst and3 such that for alk € S

af[xa < [IXllo < Bl[x]a

» In finite dimensional spaces all norms are equivalent, buimo
infinite dimensional spaces.

» Norms definalistances between elements of space
d(f,g)=|f-d|
» Distance defines theneighborhood on (S| - ||)
B(f.&,]-1)={geS|[f-g] <e}
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Functionals

In CoV we are not maximizing the value of a simple function,wamnt to
find a “curve” that maximizes (or minimizes)tanctional. Think of
functionals as a generalization of a function, except wethank of it as
anc-dimensional max. problem.
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Inner products

An inner product is a function(-,-) : Sx S— R, i.e. it maps two
elements from a vector spa&4o a real number, such that for any
f,g,he Sanda € R.

(f,f)>0

(f,f)=0iff f =0
(f+g,h)=(f,0)+(f,h)
(f.9)={(g.f)
(af,g)=a(f,g)

A vector space with an inner product is calledianer product space.
We can use/(f, f) as a norm.
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Functionals

» A Functional maps an element of a vector space to a real number,
eg.F:S—R.

» Typically in CoV Sis a space of functions, e.g(x)
» Example Functionals

Fiy®)} = [y(0)]
Fiy(¥)} = maxy(x)}
_ dy
Fiy®} = ax|_,
F{y®¥} = y(0)+y(1)

N
F{y)} = ;anym)
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Integral functionals

» Previous functionals not very interesting.
» Easy to findy(x) which minimizes these.
» Integral functionals are more interesting.
» Example integral functionals
b
Fivh = [ yoodx

b
Fiy} =

/61f(x)y(x)dx
F{y} = /abler(%)de
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Example: the Brachystochrone

The time taken is

L ds
Ty = [ v

The energy of a body is the sum of po-
tential and kinetic energy

E= %mv(x)2 + mgy(x)

and a simple conservation law says this
is constant, so

y Potential energy = mgy(x)
A (%, Yo Kineticenergy=1/2myv 2

2E

V(X) =/~ — 29¥(X)
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Example: a hanging wire

The potential energy of the catvti
is

Wiy} = [ maysas

WherelL is the length of the ca-
ble

m = mass per unit length
g = gravitational constant

The system will seek to minimi2&/,{y}
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Example: a bent beam

Bent elastic beam.

A

Two end-points are fixed, and clamped so that they are lewgl, e
y(0) =0,y (0) = 0, andy(d) = 0 andy'(d) = 0.
The load (per unit length) on the beam is given by a funcgipr).
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Example: a bent beam

Lety: [0,d] — R describe the shape of the beam, and0,d] — R be the
load per unit length on the beam.
For a bent elastic beam the potential energy from elasteefois

d
Vp = g/ y?dx, k= flexural rigidity
0
The potential energy is
d
Vo= — [ p(x)y(x) o

Thus the total potential energy is

d 12
V= [ — ey ax
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Example: parking a car

Classic problem: from Craggs, p.55

We want to drive a car/tank from poiAtto pointB as quickly
as possible, and at poiBtthe car should be stationary.
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Control Example: plant growth

Stimulated plant growth problem:

» market gardener wants her plants’ heigho reach 2 within a fixed
window of time|[0, 1]

» can supplement natural growth with lights (at night)

» growth rate of the plants
X=1+u

» cost of lights
11
F{u}:/ “Udt
0 2

Minimize cost, subject to the constraints.
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Example: parking a car

We want to drive a car/tank from poiAtto pointB as quickly
as possible, and at poiBtthe car should be stationary.

Newton’s law
force=F =m¥X

Choose forcd that minimizes the time subject fo= 0 att = 0 and
t =T, whereT is not specified, but rather given by

T{F}:/ABdt

and it is this functional we wish to minimize.
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