The Catenary

Variational Methods \& Optimal Control

lecture 04

Matthew Roughan
matthew.roughan@adelaide.edu.au
Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

April 14, 2016

Variational Methods \& Optimal Control: lecture 04 - p.1/40

Fixed-end point problems

We'll start with the simplest functional maximization problem, and show how to solve by finding the first variation and deriving the Euler-Lagrange equations:

$$
\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)-\frac{\partial f}{\partial y}=0
$$

The potential energy of the cable
is

$$
W_{p}\{y\}=\int_{0}^{L} m g y(s) d s
$$

Where L is the length of the cable

Catenary problem where we have pullies on top of each pylon, and a large amount of cable. Under appropriate conditions it will reach an equilibrium shape. The critical features of this problem are that the end-points are fixed but the length L of the cable is unconstrained.

Variational Methods \& Optimal Control: lecture 04 - p.3/40
Fixed end-point variational problem

Formulation

Define the functional $F: C^{2}\left[x_{0}, x_{1}\right] \rightarrow \mathbb{R}$

$$
F\{y\}=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x
$$

where f is assumed to be function with (at least) continuous second-order partial derivatives, WRT x, y, and y^{\prime}.

Problem: determine $y \in C^{2}\left[x_{0}, x_{1}\right]$ such that $y\left(x_{0}\right)=y_{0}$ and $y\left(x_{1}\right)=y_{1}$, such that F has a local extrema.

The Catenary

$$
W_{p}\{y\}=\int_{0}^{L} m g y(s) d s
$$

Change of variables $d s=\sqrt{1+y^{\prime 2}} d x$. So the functional of interest (the potential energy) is

$$
\begin{aligned}
W_{p}\{y\} & =m g \int_{x_{0}}^{x_{1}} y \sqrt{1+y^{\prime 2}} d x \\
& =m g \int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x
\end{aligned}
$$

where

$$
f\left(x, y, y^{\prime}\right)=y \sqrt{1+y^{\prime 2}}
$$

The Catenary

$$
W_{p}\{y\}=\int_{0}^{L} m g y(s) d s
$$

But I don't know how to evaluate this integral directly. Lets do a simple change of variables. The length of a line segment from (x, y) to $(x+\delta x, y+\delta y)$ is

$$
\begin{aligned}
\delta s & \simeq \sqrt{\delta x^{2}+\delta y^{2}} \\
& =\sqrt{1+\left(\frac{\delta y}{\delta x}\right)^{2}} \delta x \\
d s & =\sqrt{1+y^{\prime 2}} d x
\end{aligned}
$$

Variational Methods \& Optimal Control: lecture 04 - p. $7 / 40$

How do we tackle these problems

look at small perturbations about the max/min.
${ }^{\prime}{ }_{4}$

For a local maximum $f(x+\varepsilon) \leq f(x)$
\Rightarrow Conditions for extremals, i.e., $f^{\prime}(x)=0$

Perturbations of functions

Variational Methods \& Optimal Control: lecture 04 - p.9/40

Perturbations of functions

Perturbations of functions

Variational Methods \& Optimal Control: lecture 04 - p.11/40

The Functional of interest.

Define the functional $F: C^{2}\left[x_{0}, x_{1}\right] \rightarrow \mathbb{R}$

$$
F\{y\}=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x
$$

where f is assumed to be function with continuous second-order partial derivatives, WRT x, y, and y^{\prime}.
Problem: determine $y \in C^{2}\left[x_{0}, x_{1}\right]$ such that $y\left(x_{0}\right)=y_{0}$ and $y\left(x_{1}\right)=y_{1}$,
such that F has a local extrema.
The space of possible curves is

$$
S=\left\{y \in C^{2}\left[x_{0}, x_{1}\right] \mid y\left(x_{0}\right)=y_{0}, y\left(x_{1}\right)=y_{1}\right\}
$$

\Rightarrow The vector space of allowable perturbations is

$$
\mathcal{H}=\left\{\eta \in C^{2}\left[x_{0}, x_{1}\right] \mid \eta\left(x_{0}\right)=0, \eta\left(x_{1}\right)=0\right\}
$$

Perturbation functions

The vector space of allowable perturbations is

$$
\mathcal{H}=\left\{\eta \in C^{2}\left[x_{0}, x_{1}\right] \mid \eta\left(x_{0}\right)=0, \eta\left(x_{1}\right)=0\right\}
$$

Variational Methods \& Optimal Control: lecture 04 - p.13/40

What to do

Regard f as a function of 3 independent variables: x, y, y^{\prime}
Take $\hat{y}(x)=y(x)+\varepsilon \eta(x)$, where $y \in S$ and $\eta \in \mathcal{H}$.
Taylor's theorem (note x is kept constant below)

$$
f\left(x, \hat{y}, \hat{y}^{\prime}\right)=f\left(x, y, y^{\prime}\right)+\varepsilon\left[\eta \frac{\partial f}{\partial y}+\eta^{\prime} \frac{\partial f}{\partial y^{\prime}}\right]+O\left(\varepsilon^{2}\right)
$$

So

$$
\begin{aligned}
F\{\hat{y}\}-F\{y\} & =\int_{x_{0}}^{x_{1}} f\left(x, \hat{y}, \hat{y}^{\prime}\right) d x-\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x \\
& =\varepsilon \int_{x_{0}}^{x_{1}}\left[\eta \frac{\partial f}{\partial y}+\eta^{\prime} \frac{\partial f}{\partial y^{\prime}}\right] d x+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

The first variation

For small ε the quantity

$$
\delta F(\eta, y)=\lim _{\varepsilon \rightarrow 0} \frac{F\{y+\varepsilon \eta\}-F\{y\}}{\varepsilon}=\int_{x_{0}}^{x_{1}}\left[\eta \frac{\partial f}{\partial y}+\eta^{\prime} \frac{\partial f}{\partial y^{\prime}}\right] d x
$$

is called the First Variation.
For $F\{y\}$ to be a minimum, for small $\varepsilon, F\{\hat{y}\} \geq F\{y\}$, so the sign of $\delta F(\eta, y)$ is determined by ε.

As before, we can vary the sign of ε, so for $F\{y\}$ to be a local minima it must be the case that

$$
\delta F(\eta, y)=0, \quad \forall \eta \in \mathcal{H}
$$

Variational Methods \& Optimal Control: lecture 04 - p.15/40

Analogy to functions

This condition on the first variation is analogous to all partial derivatives being zero!

For a function of N variables to have a local extrema

$$
\frac{\partial f}{\partial x_{i}}=0, \quad \forall i=1, \ldots, n
$$

For a functional to be an extrema

$$
\delta F(\eta, y)=\left.\frac{d}{d \varepsilon} F(y+\varepsilon \eta)\right|_{\varepsilon=0}=0, \quad \forall \eta \in \mathcal{H}
$$

Note now that we have to minimize over an infinite dimensional space \mathcal{H}, instead of \mathbb{R}^{n}.

Simplification

Integrate the second term by parts

$$
\begin{aligned}
\delta F(\eta, y) & =\int_{x_{0}}^{x_{1}}\left[\eta \frac{\partial f}{\partial y}+\eta^{\prime} \frac{\partial f}{\partial y^{\prime}}\right] d x \\
& =\left[\eta \frac{\partial f}{\partial y^{\prime}}\right]_{x_{0}}^{x_{1}}+\int_{x_{0}}^{x_{1}} \eta\left[\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)\right] d x
\end{aligned}
$$

But note that by the problem definition $\eta \in \mathcal{H}$, and so $\eta\left(x_{0}\right)=\eta\left(x_{1}\right)=0$, and so the first term is zero.
The function inside the integral exists, and is continuous by our assumption that f has two continuous derivatives, so for

$$
E(x)=\left[\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)\right]
$$

$$
\delta F(\eta, y)=\int_{x_{0}}^{x_{1}} \eta(x) E(x) d x=\langle\eta, E\rangle^{2}=0
$$

Variational Methods \& Optimal Control: lecture 04 - p.17/40

Euler-Lagrange equation

Theorem 2.2.1: Let $F: C^{2}\left[x_{0}, x_{1}\right] \rightarrow \mathbb{R}$ be a functional of the form

$$
F\{y\}=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x
$$

where f has continuous partial derivatives of second order with respect to x, y, and y^{\prime}, and $x_{0}<x_{1}$. Let

$$
S=\left\{y \in C^{2}\left[x_{0}, x_{1}\right] \mid y\left(x_{0}\right)=y_{0} \text { and } y\left(x_{1}\right)=y_{1}\right\}
$$

where y_{0} and y_{1} are real numbers. If $y \in S$ is an extremal for F, then for all $x \in\left[x_{0}, x_{1}\right]$

$$
\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)-\frac{\partial f}{\partial y}=0 \Leftarrow \text { the Euler-Lagrange equation }
$$

A useful lemma

Lemma 2.2.1: Let $\alpha, \beta \in \mathbb{R}$, such that $\alpha<\beta$. Then there is a function
$v \in C^{2}(\mathbb{R})$, such that $v(x)>0$ for all $x \in(\alpha, \beta)$ and $v(x)=0$ otherwise.
Proof: by example

$$
v(x)= \begin{cases}(x-\alpha)^{3}(\beta-x)^{3}, & \text { if } x \in(\alpha, \beta) \\ 0, & \text { otherwise }\end{cases}
$$

Variational Methods \& Optimal Control: lecture 04 - p.19/40

A second useful lemma

Lemma 2.2.2: Suppose $\langle\eta, g\rangle=0$ for all $\eta \in \mathcal{H}$. If $g:\left[x_{0}, x_{1}\right] \rightarrow \mathbb{R}$ is a
continuous function then $g(x)=0$ for all $x \in\left[x_{0}, x_{1}\right]$.
Proof: Suppose $g(x)>0$ for $x \in[\alpha, \beta]$. Choose v as in Lemma 2.2.1.

$$
\langle v(x), g(x)\rangle^{2}=\int_{x_{1}}^{x_{2}} v(x) g(x) d x=\int_{\alpha}^{\beta} v(x) g(x) d x>0
$$

Hence a contradiction.
Similar proof for $g(x)<0$.

Proof of Euler-Lagrange equation

Example: geodesics in a plane

The arclength of a curve described by $y(x)$ will be

$$
F\{y\}=\int_{0}^{1} \sqrt{1+y^{\prime 2}} d x
$$

Then

$$
\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)-\frac{\partial f}{\partial y}=\frac{d}{d x}\left(\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right)-0=0
$$

So $\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}$ is a constant, implying $y^{\prime}=$ const. Hence $y(x)=c_{1} x+c_{2}$, the equation of a straight line.

- Q: how do I know this is a minimum?

Example: geodesics in a plane

Let $\left(x_{0}, y_{0}\right)=(0,0)$ and $\left(x_{1}, y_{1}\right)=(1,1)$, find the shortest path between these two points.

The length of a line segment from x to $x+\delta x$ is

$$
\begin{aligned}
\delta s & =\sqrt{\delta x^{2}+\delta y^{2}} \\
& =\sqrt{1+\left(\frac{\delta y}{\delta x}\right)^{2}} \delta x \\
d s & =\sqrt{1+y^{\prime 2}} d x
\end{aligned}
$$

So the total path length is $F\{y\}=\int_{x=0}^{x=1} d s=\int_{0}^{1} \sqrt{1+y^{\prime 2}} d x$

Variational Methods \& Optimal Control: lecture 04 - p. 23/40

Special cases

Now that we know the Euler-Lagrange (E-L) equations, we can use them directly, but there are some special cases for which the equations simplify, and make our life easier:

- f depends only on y^{\prime}
- f has no explicit dependence on x (autonomous case)
- f has no explicit dependence on y
- $f=A(x, y) y^{\prime}+B(x, y)$ (degenerate case)

Special case 1

When f depends only on y^{\prime} the E-L equations simplify to

$$
\frac{\partial f}{\partial y^{\prime}}=\text { const }
$$

An example of this is calculating geodesics in the plane (which we all know are straight lines).

Variational Methods \& Optimal Control: lecture 04 - p.25/40

f depends only on y^{\prime}

Geodesics in the plane are a special case of $f=f\left(y^{\prime}\right)$, with no explicit dependence on y. Apply the chain rule to the E-L equation and we get

$$
\begin{aligned}
\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}} & =0 \\
\frac{d^{2} f\left(y^{\prime}\right)}{d y^{\prime 2}} \frac{d y^{\prime}}{d x} & =0 \\
\frac{d^{2} f\left(y^{\prime}\right)}{d y^{\prime 2}} y^{\prime \prime} & =0
\end{aligned}
$$

so one of the two following must be true

$$
\begin{aligned}
f^{\prime \prime}\left(y^{\prime}\right) & =0 \\
y^{\prime \prime} & =0
\end{aligned}
$$

f depends only on y^{\prime}

- If $f^{\prime \prime}\left(y^{\prime}\right)=0$, then $f\left(y^{\prime}\right)=a y^{\prime}+b$. We will later see that problems in this form are "degenerate", and solutions don't depend on the curve's shape.
- If $y^{\prime \prime}=0$, then

$$
y=c_{1} x+c_{2} .
$$

So for non-degenerate problems with only y^{\prime} dependence the extremals are straight lines

- e.g. geodesics in the plane

$$
\text { Variational Methods \& Optimal Control: lecture } 04-\text { p. } 27 / 40
$$

Example f depends only on y^{\prime}

Consider finding the extremals of

$$
F\{y\}=\int_{0}^{1} \alpha y^{\prime 4}-\beta y^{\prime 2}, d x
$$

such that $y(0)=0$ and $y(1)=b$.
The Euler-Lagrange equation is

$$
\frac{d}{d x}\left[4 \alpha y^{\prime 3}-2 \beta y^{\prime 2}\right]=0
$$

We could play around with this for a while to solve, but we already know the solutions are straight lines, so the extremal will be

$$
y=b x
$$

Fermat's principle

Fermat's principle of geometrical optics:
Light travels along a path between any two points such that the time taken is minimized

Take the speed of light to be dependent on the media, e.g. $c=c(x, y)$, the time taken by light along a path $y(x)$ is

$$
T\{y\}=\int_{x_{0}}^{x_{1}} \frac{\sqrt{1+y^{\prime 2}}}{c(x, y)} d x
$$

Fermat's principle says the actual path of light will be a minima of this functional.

Variational Methods \& Optimal Control: lecture 04 - p.29/40

Speed of light

The speed of light (EM radiation) is only constant in a vacuum

medium	speed $(\mathrm{km} / \mathrm{s})$	refractive index
vacuum	300,000	1.0
water	231,000	~ 1.3
glass	200,000	~ 1.5
diamond	125,000	~ 2.4
silicon	75,000	~ 4.0

Refractive index $=c / v$

Example

Consider $c(x, y)=1 / g(x)$

$$
\begin{gathered}
T\{y\}=\int_{x_{0}}^{x_{1}} g(x) \sqrt{1+y^{\prime 2}} d x \\
f\left(x, y, y^{\prime}\right)=g(x) \sqrt{1+y^{\prime 2}}
\end{gathered}
$$

f has no explicit dependence on y so

$$
\begin{aligned}
\frac{\partial f}{\partial y^{\prime}} & =\text { const } \\
g(x) \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}} & =\text { const }
\end{aligned}
$$

$$
\text { Variational Methods \& Optimal Control: lecture } 04-\text { p. } 31 / 40
$$

Example (ii)

$$
\begin{aligned}
g(x) \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}} & =c_{1} \\
\frac{y^{\prime 2}}{1+y^{\prime 2}} & =\frac{c_{1}^{2}}{g(x)^{2}} \quad \text { implies } c_{1}^{2} \leq g(x)^{2} \\
y^{\prime 2} & =\frac{c_{1}^{2}}{g(x)^{2}}\left(1+y^{\prime 2}\right) \\
y^{\prime 2}\left(1-\frac{c_{1}^{2}}{g(x)^{2}}\right) & =\frac{c_{1}^{2}}{g(x)^{2}} \\
y^{\prime} & =\sqrt{\frac{c_{1}^{2}}{g(x)^{2}-c_{1}^{2}}}
\end{aligned}
$$

Example (iii)

$$
\begin{aligned}
y^{\prime} & =\sqrt{\frac{c_{1}^{2}}{g(x)^{2}-c_{1}^{2}}} \\
y & =c_{1} \int \frac{1}{\sqrt{g(x)^{2} / c_{1}^{2}-1}} d x+c_{2}
\end{aligned}
$$

The constants, c_{1} and c_{2} are determined by the fixed end points.

- so not all extremals are straight lines
- we had to include an x term here to make it more interesting

Variational Methods \& Optimal Control: lecture 04 - p.33/40

What we can't do (yet)

Remember, f must have at least two continuous derivatives. If the speed of light $c(x, y)$ has discontinuities, then we are in trouble.

The total time taken

We can simplify the integrals by noting from Pythagoras that the lengths of the two lines are

$$
\sqrt{\left(x^{*}-x_{0}\right)^{2}+\left(y^{*}-y_{0}\right)^{2}} \quad \text { and } \quad \sqrt{\left(x^{*}-x_{1}\right)^{2}+\left(y^{*}-y_{1}\right)^{2}}
$$

and that the time take to traverse the pair of line segments will be

$$
T\{y\}=\frac{\sqrt{\left(x^{*}-x_{0}\right)^{2}+\left(y^{*}-y_{0}\right)^{2}}}{c_{0}}+\frac{\sqrt{\left(x^{*}-x_{1}\right)^{2}+\left(y^{*}-y_{1}\right)^{2}}}{c_{1}}
$$

$$
\frac{d T}{d y^{*}}=\frac{\left(y^{*}-y_{0}\right)}{c_{0}\left[\left(x^{*}-x_{0}\right)^{2}+\left(y^{*}-y_{0}\right)^{2}\right]^{1 / 2}}-\frac{\left(y_{1}-y^{*}\right)}{c_{1}\left[\left(x^{*}-x_{1}\right)^{2}+\left(y^{*}-y_{1}\right)^{2}\right]^{1 / 2}}
$$

Variational Methods \& Optimal Control: lecture 04 - p.37/40

The result

$$
\begin{aligned}
\frac{d T}{d y^{*}} & =\frac{\left(y^{*}-y_{0}\right)}{c_{0}\left[\left(x^{*}-x_{0}\right)^{2}+\left(y^{*}-y_{0}\right)^{2}\right]^{1 / 2}}-\frac{\left(y_{1}-y^{*}\right)}{c_{1}\left[\left(x^{*}-x_{1}\right)^{2}+\left(y^{*}-y_{1}\right)^{2}\right]^{1 / 2}} \\
& =\frac{\sin \phi_{0}}{c_{0}}-\frac{\sin \phi_{1}}{c_{1}}
\end{aligned}
$$

which we require to be zero to find the minimum. Hence

$$
\frac{\sin \phi_{0}}{c_{0}}=\frac{\sin \phi_{1}}{c_{1}} \Leftarrow \text { Snell's law for refraction }
$$

Hence there are often ways around discontinuities, though it may involve some pain
(e.g. what about internal reflection)

More than one boundary

Snell's law applies at each boundary

Variational Methods \& Optimal Control: lecture 04 - p.39/40

Dealing with "kinks"

- We'll spend a fair bit of time later on dealing with "kinks" in curves
- Underlying point
\triangleright The integral can still be well defined even if extremal isn't "smooth"
\triangleright But the Euler-Lagrange equations don't work at the kinks
\triangleright Use the Euler-Lagrange equations everywhere except the kinks
\triangleright Do something else at the kinks

