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Fixed-end point problems

We’'ll start with the simplest functional maximization ptelm, and show
how to solve by finding thérst variationand deriving thé=uler-Lagrange

equations:
d /of\ of 0
dx \ay / oy
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The Catenary

The potential energy of the cable

IS y A
L y
W= o | MNew
Y1
WhereL is the length of the ca- lg
ble
— d L
—

XO Xl
Catenary problem where we have pullies on top of each pylmhadarge
amount of cable. Under appropriate conditions it will reach
equilibrium shape. The critical features of this problem trat the
end-points aréxed but the lengthL of the cable is unconstrained.

Variational Methods & Optimal Control: lecture 04 — p.3/40



Fixed end-point variational problem

A

(X11y1)
Y = Y(X)

(XO 1y0)

y b '¢
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Formulation
Define the functionaF : C2[xp,x1] — IR

F{y}=/XOX1f(x,y,>/)dx,

wheref is assumed to be function with (at least) continuous secoddr
partial derivatives, WRK, y, andy'.

Problem: determiney € C?[xo, 1] such thay(Xg) = Yo andy(x;) = y1, such
thatF has a local extrema.
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The Catenary

Wp{y} = /O L mgy(s)ds

But | don’t know how to evaluate this integral directly. Leks a simple
change of variables. The length of a line segment f(&ng) to

(X4 0X,y+dy) is

y
5s ~ +/Ox2+ Oy2 A
_ AW 57|
— \/1—|— (5—)(> OX /6 Vy
<« X—>
ds = +/1+y2dx
X
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The Catenary

Wiy} = /O L mgy(s)ds

Change of variableds = /1 + y2dx. So the functional of interest (the
potential energy) is

X1
Woly} = ng /XO yv 1+y?dx,

X1
= mg [ f(xyYy)dx

Xo
where

fxy,y) = yvi+y?

Variational Methods & Optimal Control: lecture 04 — p.7/40



How do we tackle these problems

look at smallperturbation@bout the max/min.

’A

For a local maxi-
mum

y=y(X) f(x+¢€) < f(X)

X
= Conditions for extremals, i.ef,(x) =0

Variational Methods & Optimal Control: lecture 04 — p.8/40



Perturbations of functions

A
y=y+en

(X11y1)
Y = Y(X)

(XO 1y0)

y b '¢
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Perturbations of functions

A

y=y+en

(X11y1)
Y = Y(X)

(XO 1y0)

y b '¢
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Perturbations of functions

"
y=y+ten,

(X11y1)
Y = Y(X)

(XO 1y0)

y b '¢

Variational Methods & Optimal Control: lecture 04 — p.11/40



The Functional of interest.

Define the functionaF : C2[Xp,x1] — IR

F{y}=/XOX1f(x,y,>/)dx,

wheref is assumed to be function with continuous second-ordergbart
derivatives, WRx, y, andy'.

Problem: determiney € C?[Xg, 1] such thaty/(xg) = yo andy(xy) = y1,
such tha¥ has a local extrema.
The space of possible curves is

S={y e C?xo,xa] | ¥(¥0) = Yo.¥(x) = y1}

= The vector space of allowable perturbations is
H = {n € C’[x0, %] | N(X) = 0,n(x1) = 0}
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Perturbation functions

The vector space of allowable perturbations is
H = {n € C?xo,x] | N(%) = 0,n(x1) = 0}

I\
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What to do

Regardf as a function of 3 independent variabl&sy, y
fakey(x) = y(X) +€n(x), wherey € Sandn € #.
faylor’'s theorem (not& is kept constant below)

of of

f(Xayay,> — f(X7y7y,) + &€ [r]_ +n/a_y,

5y ] +0(g%)

F Ry = [ 9 )dx- [ fxyy)dx
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The first variation
For smalle the quantity

F{y+£n}—F{y}_/X1 of af

OF(n,y) = lim

e—0 E X0

IS calledthe First VVariation.

ForF{y} to be a minimum, for smal, F{y} > F{y}, so the sign of
OF (n,y) is determined by.

As before, we can vary the sign afso forF{y} to be a local minima it
must be the case that

OF(n,y)=0, VneH
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Analogy to functions

This condition on the first variation is analogous to all @derivatives
being zero!

For a function ofN variables to have a local extrema

of

— =0 Vi=1....n
aXI b I b )

For a functional to be an extrema

d
OF(n,y)= g _Fly+en)| =0, vnei
e=0

Note now that we have to minimize over an infinite dimensiampace?,
instead ofR".
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Simplification

Integrate the second term by parts

[ 9f  of
OF (n,y) = / ln—+n—]dx

) [”ay] S [ay dx<gyf'>]dx

But note that by the problem definitiope #, and sa (X)) =n(x1) =0,
and so the first term Is zero.

The function inside the integral exists, and is continuoustr
assumption that has two continuous derivatives, so for

- [5-£(3)
5 (n.y) = [ N(YE()dx= (n,E)2=0

X0
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Euler-Lagrange equation

Theorem 2.2.1: Let F : C%[xg,X;] — IR be a functional of the form

F{y}=/XOX1f(w,>/)dx,

wheref has continuous partial derivatives of second order witheesto
X, y, andy’, andxp < X;. Let

S— {y c Cz[xo,xl] \ Y(Xo) = Yo andy(X;) = Y1} ;

whereyy andy; are real numbers. if € Sis an extremal foF, then for all
X € [Xo,X1]

d /of of |
dx (ay’) Ty 0| < the Euler-Lagrange equation
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A useful lemma

Lemma2.2.1: Leta,p € IR, such thath < 3. Then there is a function

v € C%(IR), such thaw(x) > 0 for all x € (a,B) andv(x) = O otherwise.
Proof:. by example

V(X):{ (x—0)3(B—x)3%, ifxe (a,p)

0, otherwise.
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A second useful lemma

Lemma 2.2.2; Suppos€n,g) =0foralln e #H. If g: [X,X1] — IRis a
continuous function theg(x) = 0 for all x € [Xg, X1].

Proof: Suppose(x) > 0 forx € |a,B]. Choosev as in Lemma 2.2.1.

B

0,900 = | v(xgx)dx= [ v(x)giax> 0

X1 a

Hence a contradiction.
Similar proof forg(x) < O.
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Proof of Euler-Lagrange eguation

As noted earlier, at an extremal the first variation
OF (n,y) = / N(X)E(x)dx=0

for all n(x) € #H. From Lemma 2.2.2, we can therefore state that

-5 (3) -

the Euler-Lagrange equatian.
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Example: geodesics in a plane

Let (X0,Y0) = (0,0) and(x1,y1) = (1,1), find the shortest path between
these two points.

The length of a line segment frorto x+ dx is

y
5s = +/Ox2+ dy2 A
~ 3y ? 5
-1 (Y)'s 7y
<—6X—>
ds = +/1-+y?2dx
X

So the total path length B{y} = [~ ds= [ 1/1+y?2dx
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Example: geodesics in a plane

The arclength of a curve describedyix) will be

F{y}zfolx/ﬁy’zdx

Then

d (of\ _of _d( v \ ,_,
dx \dy ) dy dx\ . /1+y?2 -

So \/1yTy2 IS a constant, implying’ = const. Hencey(x) = c;x+ Cy, the

equation of a straight line.

B Q: how do | know this is a minimum?
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Special cases

Now that we know the Euler-Lagrange (E-L) equations, we Gathem
directly, but there are some special cases for which thetemsasimplify,
and make our life easier:

m f depends only oy

B f has no explicit dependence aifautonomous case)
B f has no explicit dependence gn

mf=AXY)Y +B(xYy) (degenerate case)
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Special case 1

Whenf depends only o' the E-L equations simplify to

of

a—y/ = cond

An example of this is calculating geodesics in the plane ¢Wwhie all
know are straight lines).
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f depends only oy

Geodesics in the plane are a special cask-eff (y'), with no explicit
dependence oyn Apply the chain rule to th&-L equation and we get

d of

dx dy’
d*f(y) dy
dy? dx

d*fly) ., _
dy/2 y, = 0

= 0

so one of the two following must be true

f'y) = 0
y' =0
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f depends only oy

mIf f7(y) =0, thenf(y)=ay +b. We will later see that problems in
this form are “degenerate”, and solutions don’t depend en th
curve’s shape.

mIf y' =0, then
Yy = C1X+ Co.
So for non-degenerate problems with oglylependence the extremals
are straight lines
B e.g. geodesics in the plane
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Examplef depends only oy

Consider finding the extremals of

F{y} =/010(>/4—B>/2,dx

such thaty(0) = 0 andy(1) = b.
The Euler-Lagrange equation is

d

™ 40y —2By?] =0

We could play around with this for a while to solve, but we athe know
the solutions are straight lines, so the extremal will be

y = bX
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Fermat’s principle

Fermat’s principle of geometrical optics:

Light travels along a path between any two points such that
the time taken is minimized

Take the speed of light to be dependent on the mediagce=c(Xx,y), the
time taken by light along a patf{x) is

Ty = [T

Fermat’s principle says the actual path of Ilght will be a rma of this
functional.
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Speed of light

The speed of light (EM radiation) is only constant in a vacuum

medium | speed (km/s) refractive index
vacuum 300,000| 1.0
water 231,000 ~ 1.3
glass 200,000| ~ 1.5
diamond 125,000 ~ 2.4
silicon 75,000 ~4.0
Refractive index /v
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Example

Considerc(x,y) = 1/9(X)

Tiv= [ g0v/1+y2ok

X0

f(xy,Y)=09(x)v1+y?

f has no explicit dependence g130

ot _ congt
oy
g(x) Y = cond
1_|_y/2
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Example (i)

i

impliesc? < g(x)?

1

(1+y?)
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Example (i)

The constants;; andc, are determined by the fixed end points.

B so not all extremals are straight lines
® we had to include arterm here to make it more interesting
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What we can’t do (yet)

memberf must have at least two continuous derivatives. If the spéédlu
,Y) has discontinuities, then we are in trouble.

(X11y1)

(XO 1y0)
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How we might solve

Break into two problems, with a boundary poimt, y*), which has a fixed
value ofx* (the location of the boundary), but a movable valueyfor

(X11y1)
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The functional

X* 1_|_ /2 X1 1_|_ /2
o= [ [

Separate into two problems, as if we knexv, y*). Each is a geodesic in
the plane problem. So the solutions are straight lines

y(X>— (X_XO)XI%E(/?)—i_yO X< X'
(X=X 2L +y* x>

Now we can explicitly comput&é {y} as a function ok, by differentiating
y, and then we can treat it as a minimization problem in oneatéay*.
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The total time taken

We can simplify the integrals by noting from Pythagoras thatlengths
of the two lines are

VX —%0)2+(y —¥0)2 and /(x +(y* —y1)?

and that the time take to traverse the pair of line segmeritbeavi

Tiy} = Y (x —xO)i: ¥ —¥%)* VX —xl);+ (Y —y1)?

ar _ (Y —Yo) ~ (y1—Y")
Ay oo [(¢ —x0)2+ (v —yo) e[ —xa)?+ (v —yn)
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The result

ar - _ (Y —Yo) B (Y1 —Y")

dy” Co[(x* —%0)2+ (y —¥0)21¥? e [(x —xa)2+ (y* —y2)2] "2
_sin@ sing
G

which we require to be zero to find the minimum. Hence

singy  singy
Co C1

< Sndl’slaw for refraction

Hence there are often ways around discontinuities, thougiay involve
some pain
(e.g. what about internal reflection)
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More than one boundary

Snell’'s law applies at each boundary

> (X]_,y])
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Dealing with “kinks”

m \We’'ll spend a fair bit of time later on dealing with “kinks” curves

® Underlying point

B The integral can still be well defined even if extremal isn’t
“smooth”

B But the Euler-Lagrange equations don’t work at the kinks
B Use the Euler-Lagrange equations everywhere except tlks kin
B Do something else at the kinks
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