Variational Methods \& Optimal Control

lecture 12

Matthew Roughan
matthew.roughan@adelaide.edu.au
Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

April 14, 2016

Variational Methods \& Optimal Control: lecture 12 - p. $1 / 27$

Numerical Solutions

The E-L equations may be hard to solve
Natural response is to find numerical methods

- Numerical solution of E-L DE
\triangleright we won't consider these here (see other courses)
- Euler's finite difference method
- Ritz (Rayleigh-Ritz)
\triangleright In 2D: Kantorovich's method

Euler's finite difference method

We can approximate our function (and hence the integral) onto a finite grid. In this case, the problem reduces to a standard multivariable maximization (or minimization) problem, and we find the solution by setting the derivatives to zero. In the limit as the grid gets finer, this approximates the E-L equations.

Variational Methods \& Optimal Control: lecture 12 - p.3/27

Numerical Approximation

Numerical approximation of integrals:

- use an arbitrary set of mesh points $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b$.
- approximate

$$
y^{\prime}\left(x_{i}\right)=\frac{y_{i+1}-y_{i}}{x_{i+1}-x_{i}}=\frac{\Delta y_{i}}{\Delta x_{i}}
$$

- rectangle rule

$$
F\{y\}=\int_{a}^{b} f\left(x, y, y^{\prime}\right) d x \simeq \sum_{i=0}^{n-1} f\left(x_{i}, y_{i}, \frac{\Delta y_{i}}{\Delta x_{i}}\right) \Delta x_{i}=\bar{F}(\mathbf{y})
$$

$\bar{F}(\cdot)$ is a function of the vector $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

Finite Difference Method (FDM)

Treat this as a maximization of a function of n variables, so that we require

$$
\frac{\partial \bar{F}}{\partial y_{i}}=0
$$

for all $i=1,2, \ldots, n$.
Typically use uniform grid so $\Delta x_{i}=\Delta x=(b-a) / n$.

Simple Example

Find extremals for

$$
F\{y\}=\int_{0}^{1}\left[\frac{1}{2} y^{\prime 2}+\frac{1}{2} y^{2}-y\right] d x
$$

with $y(0)=0$ and $y(1)=0$.
E-L equations $y^{\prime \prime}-y=1$.

Simple Example: direct solution

E-L equations $y^{\prime \prime}-y=-1$
Solution to homogeneous equations $y^{\prime \prime}-y=0$ is given by $e^{\lambda x}$ giving
characteristic equation $\lambda^{2}-1=0$, so $\lambda= \pm 1$.
Particular solution $y=1$
Final solution is

$$
y(x)=A e^{x}+B e^{-x}+1
$$

The boundary conditions $y(0)=y(1)=0$ constrain $A+B=-1$ and $A e+B e^{-1}=-1$, so $A e+(1-A) e^{-1}=1$, so $A=\frac{e^{-1}-1}{e-e^{-1}}$ and $B=\frac{1-e}{e-e^{-1}}$.
Then the exact solution to the extremal problem is

$$
y(x)=\frac{e^{-1}-1}{e-e^{-1}} e^{x}+\frac{1-e}{e-e^{-1}} e^{-x}-1
$$

Variational Methods \& Optimal Control: lecture 12 - p.5/27

Variational Methods \& Optimal Control: lecture 12 - p. $7 / 27$

Simple Example: Euler's FDM

Find extremals for

$$
F\{y\}=\int_{0}^{1}\left[\frac{1}{2} y^{\prime 2}+\frac{1}{2} y^{2}-y\right] d x
$$

Euler's FDM.

- Take the grid $x_{i}=i / n$, for $i=0,1, \ldots, n$ so
\triangleright end points $y_{0}=0$ and $y_{n}=0$
$\triangleright \Delta x=1 / n$
$\triangleright \Delta y_{i}=y_{i+1}-y_{i}$
- So
$\triangleright y_{i}^{\prime}=\Delta y_{i} / \Delta x=n\left(y_{i+1}-y_{i}\right)$
\triangleright and

$$
y_{i}^{\prime 2}=n^{2}\left(y_{i}^{2}-2 y_{i} y_{i+1}+y_{i+1}^{2}\right)
$$

Simple Example: Euler's FDM

Find extremals for

$$
F\{y\}=\int_{0}^{1}\left[\frac{1}{2} y^{\prime 2}+\frac{1}{2} y^{2}-y\right] d x
$$

Its FDM approximation is

$$
\begin{aligned}
\bar{F}(\mathbf{y}) & =\sum_{i=0}^{n-1} f\left(x_{i}, y_{i}, y_{i}^{\prime}\right) \Delta x \\
& =\sum_{i=0}^{n-1} \frac{1}{2} n^{2}\left(y_{i}^{2}-2 y_{i} y_{i+1}+y_{i+1}^{2}\right) \Delta x+\left(y_{i}^{2} / 2-y_{i}\right) \Delta x \\
& =\sum_{i=0}^{n-1} \frac{1}{2} n\left(y_{i}^{2}-2 y_{i} y_{i+1}+y_{i+1}^{2}\right)+\frac{y_{i}^{2} / 2-y_{i}}{n}
\end{aligned}
$$

Variational Methods \& Optimal Control: lecture 12 - p.9/27

Simple Example: end-conditions

- We know the end conditions $y(0)=y(1)=0$, which imply that

$$
y_{0}=y_{n}=0
$$

- Include them into the objective using Lagrange multipliers

$$
\bar{H}(\mathbf{y})=\sum_{i=0}^{n-1} \frac{1}{2} n\left(y_{i}^{2}-2 y_{i} y_{i+1}+y_{i+1}^{2}\right)+\frac{y_{i}^{2} / 2-y_{i}}{n}+\lambda_{0} y_{0}+\lambda_{n} y_{n}
$$

Simple Example: Euler's FDM

Taking derivatives, note that y_{i} only appears in two terms of the FDM approximation

$$
\begin{aligned}
\bar{H}(\mathbf{y}) & =\sum_{i=0}^{n-1} \frac{1}{2} n\left(y_{i}^{2}-2 y_{i} y_{i+1}+y_{i+1}^{2}\right)+\frac{y_{i}^{2} / 2-y_{i}}{n}+\lambda_{0} y_{0}+\lambda_{n} y_{n} \\
\frac{\partial \bar{H}(\mathbf{y})}{\partial y_{i}} & = \begin{cases}n\left(y_{0}-y_{1}\right)+\frac{y_{0}-1}{n}+\lambda_{0} & \text { for } i=0 \\
n\left(2 y_{i}-y_{i+1}-y_{i-1}\right)+\frac{y_{i}}{n}-\frac{1}{n} & \text { for } i=1, \ldots, n-1 \\
n\left(y_{n}-y_{n-1}\right)+\lambda_{n} & \text { for } i=n\end{cases}
\end{aligned}
$$

We need to set the derivatives to all be zero, so we now have $n+3$ linear equations, including $y_{0}=y_{n}=0$, and $n+3$ variables including the two Lagrange multipliers. We can solve this system numerically using, e.g., matlab.

$$
\text { Variational Methods \& Optimal Control: lecture } 12 \text { - p. } 11 / 27
$$

Simple Example: Euler's FDM
Example: $n=4$, solve

$$
A \mathbf{z}=\mathbf{b}
$$

where
$A=\left(\begin{array}{rrrrr}-4.00 & & & & -4.00 \\ 8.25 & -4.00 & & & \\ -4.00 & 8.25 & -4.00 & & \\ & -4.00 & 8.25 & -4.00 & \\ & & -4.00 & 8.25 & -4.00 \\ & & -4.00 & 8.25 & -4.00\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{l}0.00 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.00 \\ 0.00\end{array}\right)$

- first $n+1$ terms of \mathbf{z} give \mathbf{y}
- last two terms given the Lagrange multipliers λ_{0} and λ_{n}

Simple example: results

Convergence of Euler's FDM

The condition for a stationary point becomes

$$
\frac{\partial \bar{F}}{\partial y_{i}}=\frac{\partial f}{\partial y_{i}}\left(x_{i}, y_{i}, y_{i}^{\prime}\right)-\frac{\frac{\partial f}{\partial y_{i}^{\prime}}\left(x_{i}, y_{i}, \frac{\Delta y_{i}}{\Delta x}\right)-\frac{\partial f}{\partial y_{i}^{\prime}}\left(x_{i-1}, y_{i-1}, \frac{\Delta y_{i-1}}{\Delta x}\right)}{\Delta x}=0
$$

In limit $n \rightarrow \infty$, then $\Delta x \rightarrow 0$, and so we get

$$
\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0
$$

which are the Euler-Lagrange equations.

- i.e., the finite difference solution converges to the solution of the E-L equations

Variational Methods \& Optimal Control: lecture 12 - p.13/27

Convergence of Euler's FDM

$$
\bar{F}(\mathbf{y})=\sum_{i=0}^{n-1} f\left(x_{i}, y_{i}, \frac{\Delta y_{i}}{\Delta x}\right) \Delta x \quad \text { and } \quad \Delta y_{i}=y_{i+1}-y_{i}
$$

Only and two terms in the sum involve y_{i}, so

$$
\begin{aligned}
\frac{\partial \bar{F}}{\partial y_{i}}= & \frac{\partial}{\partial y_{i}} f\left(x_{i-1}, y_{i-1}, \frac{\Delta y_{i-1}}{\Delta x}\right)+\frac{\partial}{\partial y_{i}} f\left(x_{i}, y_{i}, \frac{\Delta y_{i}}{\Delta x}\right) \\
= & \frac{1}{\Delta x} \frac{\partial f}{\partial y_{i}^{\prime}}\left(x_{i-1}, y_{i-1}, \frac{\Delta y_{i-1}}{\Delta x}\right) \\
& +\frac{\partial f}{\partial y_{i}}\left(x_{i}, y_{i}, \frac{\Delta y_{i}}{\Delta x}\right)-\frac{1}{\Delta x} \frac{\partial f}{\partial y_{i}^{\prime}}\left(x_{i}, y_{i}, \frac{\Delta y_{i}}{\Delta x}\right) \\
= & \frac{\partial f}{\partial y_{i}}\left(x_{i}, y_{i}, y_{i}^{\prime}\right)-\frac{\frac{\partial f}{\partial y_{i}^{\prime}}\left(x_{i}, y_{i}, \frac{\Delta y_{i}}{\Delta x}\right)-\frac{\partial f}{\partial y_{i}^{\prime}}\left(x_{i-1}, y_{i-1}, \frac{\Delta y_{i-1}}{\Delta x}\right)}{\Delta x}
\end{aligned}
$$

Variational Methods \& Optimal Control: lecture 12 - p.15/27

Comments

- There are lots of ways to improve Euler's FDM
\triangleright use a better method of numerical quadrature (integration)
\star trapezoidal rule
* Simpson's rule
\star Romberg's method
\triangleright use a non-uniform grid
\star make it finer where there is more variation
- We can use a different approach that can be even better

Ritz's method

In Ritz's method (called Kantorovich's methods where there is more than one independent variable), we approximate our functions (the extremal in particular) using a family of simple functions. Again we can reduce the problem into a standard multivariable maximization problem, but now we seek coefficients for our approximation.

Variational Methods \& Optimal Control: lecture 12 - p.17/27

Ritz's method

Assume we can approximate $y(x)$ by

$$
y(x)=\phi_{0}(x)+c_{1} \phi_{1}(x)+c_{2} \phi_{2}(x)+\cdots+c_{n} \phi_{n}(x)
$$

where we choose a convenient set of functions $\phi_{j}(x)$ and find the values of c_{j} which produce an extremal.

For fixed end-point problem:

- Choose $\phi_{0}(x)$ to satisfy the end conditions.
- Then $\phi_{j}\left(x_{0}\right)=\phi_{j}\left(x_{1}\right)=0$ for $j=1,2, \ldots, n$

The ϕ can be chosen from standard sets of functions, e.g. power series, trigonometric functions, Bessel functions, etc. (but must be linearly independent)

Ritz's method

- select $\left\{\phi_{j}\right\}_{j=0}^{n}$
- Approximate $y_{n}(x)=\phi_{0}(x)+c_{1} \phi_{1}(x)+c_{2} \phi_{2}(x)+\cdots+c_{n} \phi_{n}(x)$
- Approximate $F\{y\} \simeq F\left\{y_{n}\right\}=\int_{x_{0}}^{x_{1}} f\left(x, y_{n}, y_{n}^{\prime}\right) d x$
- Integrate to get $F\left\{y_{n}\right\}=F_{n}\left(c_{1}, c_{2}, \ldots, c_{n}\right)$
- F_{n} is a known function of n variables, so we can maximize (or minimize) it as usual by

$$
\frac{\partial F_{n}}{\partial c_{i}}=0
$$

for all $i=1,2, \ldots, n$.

Upper bounds

Assume the extremal of interest is a minimum, then for the extremal

$$
F\{y\}<F\{\hat{y}\}
$$

for all \hat{y} within the neighborhood of y. Assume our approximating function y_{n} is close enough to be in that neighborhood, then

$$
F\{y\} \leq F\left\{y_{n}\right\}=F_{n}(\mathbf{c})
$$

so the approximation provides an upper bound on the minimum $F\{y\}$. Another way to think about it is that we optimize on a smaller set of possible functions y, so we can't get quite as good a minimum.

Simple Example

Find extremals for

$$
F\{y\}=\int_{0}^{1}\left[\frac{1}{2} y^{\prime 2}+\frac{1}{2} y^{2}-y\right] d x
$$

with $y(0)=0$ and $y(1)=0$.
E-L equations $y^{\prime \prime}-y=1$, but we shall bypass the E-L equations to use Ritz's method.

$$
y_{n}(x)=\phi_{0}(x)+\sum_{i=1}^{n} c_{i} \phi_{i}(x)
$$

where we take $\phi_{0}(x)=0$ and $\phi_{i}(x)=x^{i}(1-x)^{i}$.

Simple Example

Simple approximation $y_{1}=c_{1} \phi_{1}(x)$ we get

$$
F_{1}\left(c_{1}\right)=F\left\{y_{1}\right\}=\int_{0}^{1}\left[\frac{1}{2} c_{1}^{2} \phi_{1}^{\prime 2}+c_{1}^{2} \frac{1}{2} \phi_{1}^{2}-c_{1} \phi_{1}\right] d x
$$

Now $\phi(x)=x(1-x)$ so $\phi_{1}^{\prime}=1-2 x$, and

$$
\begin{aligned}
F_{1}\left(c_{1}\right) & =\int_{0}^{1}\left[\frac{c_{1}^{2}}{2}(1-2 x)^{2}+\frac{c_{1}^{2}}{2} x^{2}(1-x)^{2}-c_{1} x(1-x)\right] d x \\
& =\frac{c_{1}^{2}}{2} \int_{0}^{1}\left[1-4 x+5 x^{2}-x^{4}\right] d x+c_{1} \int_{0}^{1}\left[-x+x^{2}\right] d x \\
& =\frac{c_{1}^{2}}{2}\left[x-2 x^{2}+5 x^{3} / 3-x^{5} / 5\right]_{0}^{1}+c_{1}\left[-x^{2} / 2+x^{3} / 3\right]_{0}^{1} \\
& =\frac{c_{1}^{2}}{2} \frac{11}{30}-\frac{c_{1}}{6}
\end{aligned}
$$

Simple Example

We solve for c_{1} by setting

$$
\frac{d F_{1}}{d c_{1}}=\frac{11 c_{1}}{30}-\frac{1}{6}=0
$$

to get $c_{1}=5 / 11$, so the approximate extremal is

$$
y_{1}(x)=\frac{5}{11} x(1-x)
$$

The value of the approximate functional at this point is

$$
F_{1}(5 / 11)=\frac{c_{1}^{2}}{2} \frac{11}{30}-\frac{c_{1}}{6}=-0.37879
$$

which is an upper bound on the true value of the functional on the extremal.

Simple example: results

Alternate approach

Choose $\phi_{1}(x)=\sin (\pi x)$ (use the first element of a trigonometric series to approximate y). Then, $\phi^{\prime}(x)=\pi \cos (\pi x)$, and so the functional is

$$
\begin{aligned}
F_{1}\left(c_{1}\right) & =F\left\{c_{1} \phi_{1}\right\}=\int_{0}^{1}\left[\frac{1}{2} c_{1}^{2} \phi_{1}^{\prime 2}+c_{1}^{2} \frac{1}{2} \phi_{1}^{2}-c_{1} \phi_{1}\right] d x \\
& =\int_{0}^{1}\left[\frac{c_{1}^{2} \pi^{2}}{2} \cos ^{2}(\pi x)+\frac{c_{1}^{2}}{2} \sin ^{2}(\pi x)-c_{1} \sin (\pi x)\right] d x
\end{aligned}
$$

Now $\int_{0}^{1} \cos ^{2}(\pi x)=\int_{0}^{1} \sin ^{2}(\pi x)=1 / 2$,
and $\int_{0}^{1} \sin (\pi x)=\left[-\frac{1}{\pi} \cos (\pi x)\right]_{0}^{1}=-2 / \pi$, so

$$
F\left(c_{1}\right)=\frac{c_{1}^{2}}{2} \frac{1}{2}\left[\pi^{2}+1\right]-\frac{2}{\pi} c_{1}
$$

Alternate approach

Once again we solve for c_{1} by setting

$$
\frac{d F_{1}}{d c_{1}}=c_{1} \frac{1}{2}\left[\pi^{2}+1\right]-\frac{2}{\pi}=0
$$

to get $c_{1}=\frac{4}{\pi\left(\pi^{2}+1\right)}$, so the approximate extremal is

$$
y_{1}(x)=\frac{4}{\pi\left(\pi^{2}+1\right)} \sin (\pi x)
$$

