Example: the Catenary, again

Variational Methods \& Optimal Control

lecture 13

Matthew Roughan
matthew.roughan@adelaide.edu.au
Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

April 14, 2016

Numerical solutions (continued)

Ritz applied to the catenary gives additional insights and Kantorovich's method generalizes Ritz to 2D functions..

The functional of interest (the potential energy) is

$$
W_{p}\{y\}=m g \int_{x_{0}}^{x_{1}} y \sqrt{1+y^{\prime 2}} d x
$$

Take symmetric problem with fixed end points

$$
y(-1)=a \text { and } y(1)=a
$$

and we know the solution looks like

$$
y(x)=c_{1} \cosh \left(\frac{x}{c_{1}}\right)
$$

where c_{1} is chosen to match the end points.

Example: the Catenary, again

$$
y(1)=2 \text { gives } c_{1}=0.47 \text { or } c_{1}=1.697
$$

- are they both local minima?

Ritz and the Catenary

Lets try approximating the curve by a polynomial

$$
y(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots
$$

Note that symmetry of problem implies y is an even function, and hence the odd terms $a_{1}=a_{3}=\cdots=0$. So, to second order we can approximate

$$
y(x) \simeq a_{0}+a_{2} x^{2}
$$

We have fixed $y(1)=y_{1}$, so we can simplify to get

$$
y(x) \simeq a_{0}+\left(y_{1}-a_{0}\right) x^{2}
$$

Variational Methods \& Optimal Control: lecture 13 - p.5/22

Ritz and the Catenary

$$
\begin{aligned}
y & \simeq a_{0}+\left(y_{1}-a_{0}\right) x^{2} \\
y^{\prime} & \simeq 2\left(y_{1}-a_{0}\right) x
\end{aligned}
$$

We can substitute into the functional

$$
W_{p}\{y\}=m g \int_{x_{0}}^{x_{1}} y \sqrt{1+y^{\prime 2}} d x
$$

and integrate to get a function $W_{p}\left(a_{1}\right)$ with respect to a_{0}.
But this function is pretty complicated

Ritz and the Catenary

From Maple

$$
\begin{aligned}
& W_{p}\left(a_{0}\right)=-1 / 4 a_{0}\left(-8 \sqrt{\pi}\left(4-4 a_{0}+a_{0}^{2}\right)+\left(-4 \ln (2)-1-\ln \left(4-4 a_{0}+a_{0}^{2}\right)\right) \sqrt{\pi}\right. \\
& -\sqrt{\pi}\left(4-4 a_{0}+a_{0}^{2}\right)\left(-\left(4-4 a_{0}+a_{0}^{2}\right)^{-1}-8\right) \\
& -8 \sqrt{\pi}\left(4-4 a_{0}+a_{0}^{2}\right) \operatorname{sqrt}\left(1+\left(16-16 a_{0}+4 a_{0}^{2}\right)^{-1}\right) \\
& \left.-1 / 16 \frac{\left.\sqrt{\pi}\left(128-128 a_{0}+32 a_{0}\right)^{2}\right) \ln \left(1 / 2+1 / 2 \operatorname{sqrq}\left(1+\left(16-16 a_{0}+4 a_{0}^{2}\right)^{-1}\right)\right)}{4-4 a_{0}+a_{0}^{2}}\right)(\sqrt{\pi})^{-1}\left(\operatorname{sqrt}\left(4-4 a_{0}+a_{0}^{2}\right)\right)^{-1} \\
& -1 / 16\left(2-a_{0}\right)\left(-16 \sqrt{\pi}\left(4-4 a_{0}+a_{0}^{2}\right)^{2}-4 \sqrt{\pi}\left(4-4 a_{0}+a_{0}^{2}\right)\right. \\
& -1 / 4\left(1 / 2-4 \ln (2)-\ln \left(4-4 a_{0}+a_{0}^{2}\right)\right) \sqrt{\pi} \\
& +2 \sqrt{\pi}\left(4-4 a_{0}+a_{0}^{2}\right)^{2}\left(1 / 16\left(4-4 a_{0}+a_{0}^{2}\right)^{-2}+2\left(4-4 a_{0}+a_{0}{ }^{2}\right)^{-1}+8\right) \\
& +2 \sqrt{\pi}\left(4-4 a_{0}+a_{0}{ }^{2}\right)^{2}\left(-\left(4-4 a_{0}+a_{0}^{2}\right)^{-1}-8\right) \operatorname{sqrt}\left(1+\left(16-16 a_{0}+4 a_{0}{ }^{2}\right)^{-1}\right) \\
& \left.+1 / 32 \frac{\sqrt{\pi}\left(64-64 a_{0}+16 a_{0}{ }^{2}\right) \ln \left(1 / 2+1 / 2 \operatorname{sqr(t)}\left(1+\left(16-16 a_{0}+4 a_{0}{ }^{2}\right)^{-1}\right)\right)}{4-4 a_{0}+a a_{0}{ }^{2}}\right)\left(4-4 a_{0}+a_{0}{ }^{2}\right)^{-3 / 2} \sqrt{\pi}{ }^{-1}
\end{aligned}
$$

Its a pain to find the zeros of $d W / d a_{0}$, but its easy to plot, and find them numerically.

Ritz and the Catenary

Its a function, and I can plot it, or use simple numerical techniques to find its stationary points.

Ritz and the Catenary

Stationary points

- local max: $a_{0} \simeq 0.41$
- local min: $a_{0} \simeq 1.69$

Variational Methods \& Optimal Control: lecture 13 - p.9/22

Ritz and the Catenary

Doesn't just give us an approximation to the extremal curves, its also gives us some insight into the nature of these extremals. If

- approximations are near to the actual extrema
- There are no other extrema so close by
- The functional is smooth (it can't have jumps either)

Then the type of extrema we get for the approximation will be the same for the real extrema, i.e.,

- local max: $a_{0} \simeq 0.41 \Rightarrow$ local max for $c_{1}=0.47$
- local min: $a_{0} \simeq 1.69 \Rightarrow$ local \min for $c_{1}=1.697$

More than one indep. var

2D case: we are approximating a surface with series of functions, e.g.

$$
z(x, y) \simeq z_{n}(x, y)=\phi_{0}(x, y)+\sum_{i=1}^{n} c_{i} \phi_{i}(x, y)
$$

where $\phi_{0}(x, y)$ satisfies the boundary conditions, e.g. $\phi_{0}(x, y)=z_{0}(x, y)$ for $(x, y) \in \delta \Omega$, the boundary of the region on interest Ω, and the $\phi_{i}(x, y)$ satisfy the homogeneous boundary conditions $\phi_{i}(x, y)=0$ for $(x, y) \in \delta \Omega$.

[^0]
More than one indep. var

As before, we approximate the functional by

$$
F\{z\} \simeq F\left\{z_{n}\right\}=F_{n}\left(c_{1}, \ldots, c_{n}\right)
$$

As before we determine the c_{j} by requiring that the partial derivatives are zero, e.g.

$$
\frac{\partial F_{n}}{\partial c_{i}}=0
$$

for all $i=1,2, \ldots, n$

Kantorovich's method

Approximate with

$$
z(x, y) \simeq z_{n}(x, y)=\phi_{0}(x, y)+\sum_{i=1}^{n} c_{i}(x) \phi_{i}(x, y)
$$

Again the ϕ_{i} are suitably chosen, but the c_{i} are no longer constants, but rather functions of one independent variable. This allows a larger class of functions to be used.

Kantorovich's method

Note that the integral function

$$
F\left\{z_{n}\right\}=\iint_{\Omega} z_{n}(x, y) d x d y=\sum_{i=0}^{n} \int c_{i}(x)\left[\int_{y_{0}(x)}^{y_{1}(x)} \phi_{i}(x, y) d y\right] d x
$$

We integrate the inner integral, and get

$$
F\left\{z_{n}\right\}=\sum_{i=0}^{n} \int c_{i}(x) \Phi_{i}(x) d x
$$

Now we just have a function of x, and so we may apply the Euler-Lagrange machinery.

The method approx. separates the variables x and y.

Example

Find the extremals of

$$
F\{z(x, y)\}=\int_{-b}^{b} \int_{-a}^{a}\left(z_{x}^{2}+z_{y}^{2}-2 z\right) d x d y
$$

with $z=0$ on the boundary.
The Euler-Lagrange equation reduces to the Poisson equation, e.g.

$$
\begin{aligned}
\frac{d}{d x} \frac{\partial f}{\partial z_{x}}+\frac{d}{d x} \frac{\partial f}{\partial z_{x}} & =\frac{\partial f}{\partial z} \\
\frac{d}{d x} 2 z_{x}+\frac{d}{d x} 2 z_{y} & =-2 \\
\nabla^{2} z(x, y) & =-1
\end{aligned}
$$

Example

Approximate

$$
z_{1}(x, y)=c(x)\left(b^{2}-y^{2}\right)
$$

Note $z_{1}(x, \pm b)=0$ (as required) and

$$
\begin{aligned}
\left(\frac{\partial z_{1}}{\partial x}\right)^{2} & =\left(c^{\prime}(x)\left(b^{2}-y^{2}\right)\right)^{2} \\
& =c^{\prime}(x)^{2}\left(b^{4}-2 b^{2} y^{2}+y^{4}\right) \\
\left(\frac{\partial z_{1}}{\partial y}\right)^{2} & =(c(x) 2 y)^{2} \\
& =4 c(x)^{2} y^{2}
\end{aligned}
$$

Example

Hence, we approximate

$$
\begin{aligned}
\{z(x, y)\} & \simeq F\left\{z_{1}(x, y)\right\} \\
& =\int_{-b}^{b} \int_{-a}^{a}\left(z_{x}^{2}+z_{y}^{2}-2 z\right) d x d y \\
& =\int_{-a}^{a}\left[\int_{-b}^{b}\left[c^{\prime}(x)^{2}\left(b^{2}-y^{2}\right)^{2}+4 c(x)^{2} y^{2}-2 c(x)\left(b^{2}-y^{2}\right)\right] d y\right] d x \\
& =\int_{-a}^{a}\left[c^{\prime}(x)^{2}\left(b^{4} y-2 b^{2} y^{3} / 3+y^{5} / 5\right)+4 c(x)^{2} y^{3} / 3-\right. \\
& \left.2 c(x)\left(b^{2} y-y^{3} / 3\right)\right]_{-b}^{b} d x \\
& =\int_{-a}^{a}\left[\frac{16}{15} b^{5} c^{\prime}(x)^{2}+\frac{8}{3} b^{3} c(x)^{2}-\frac{8}{3} b^{3} c(x)\right] d x
\end{aligned}
$$

	Variational Methods \& Optimal Control: lecture $13-$ p. $17 / 22$

Example

So we can write

$$
F\{z(x, y)\} \simeq F\left\{z_{1}(x, y)\right\}=F\{c(x)\}=\int_{-a}^{a} f\left(x, c, c^{\prime}\right) d x
$$

We can use the simple Euler-Lagrange equations, where

$$
\begin{aligned}
f\left(x, c, c^{\prime}\right) & =\frac{16}{15} b^{5} c^{\prime}(x)^{2}+\frac{8}{3} b^{3} c(x)^{2}-\frac{8}{3} b^{3} c(x) \\
\frac{\partial f}{\partial c} & =\frac{16}{3} b^{3} c(x)-\frac{8}{3} b^{3} \\
\frac{\partial f}{\partial c^{\prime}} & =\frac{32}{15} b^{5} c^{\prime}(x) \\
\frac{d}{d x} \frac{\partial f}{\partial c^{\prime}} & =\frac{32}{15} b^{5} c^{\prime \prime}(x)
\end{aligned}
$$

Example

Euler-Lagrange equations

$$
\begin{aligned}
\frac{d}{d x} \frac{\partial f}{\partial c^{\prime}}-\frac{\partial f}{\partial c} & =0 \\
\frac{32}{15} b^{5} c^{\prime \prime}(x)-\frac{16}{3} b^{3} c(x)+\frac{8}{3} b^{3} & =0 \\
c^{\prime \prime}(x)-\frac{5}{2 b^{2}} c(x) & =-\frac{5}{4 b^{2}}
\end{aligned}
$$

Solutions

$$
c(x)=k_{1} \cosh \left(\sqrt{\frac{5}{2}} \frac{x}{b}\right)+k_{2} \sinh \left(\sqrt{\frac{5}{2}} \frac{x}{b}\right)+\frac{1}{2}
$$

Example

Note that the function must be zero on the boundary so $z(\pm a, y)=0$, and so we look for an even function $c(x)$, and so $k_{2}=0$, and also $c(\pm a)=0$, so

$$
\begin{aligned}
c(a) & =k_{1} \cosh \left(\sqrt{\frac{5}{2}} \frac{a}{b}\right)+\frac{1}{2} \\
-\frac{1}{2} & =k_{1} \cosh \left(\sqrt{\frac{5}{2}} \frac{a}{b}\right) \\
k_{1} & =-\frac{1}{2 \cosh \left(\sqrt{\frac{5}{2}} \frac{a}{b}\right)}
\end{aligned}
$$

Example

Solution

$$
z_{1}(x, y)=\frac{1}{2}\left(b^{2}-y^{2}\right)\left(1-\frac{\cosh \left(\sqrt{\frac{5}{2}} \frac{x}{b}\right)}{\cosh \left(\sqrt{\frac{5}{2}} \frac{a}{b}\right)}\right)
$$

If we wanted a more exact approximation, we could try

$$
z_{2}(x, y)=\left(b^{2}-y^{2}\right) c_{1}(x)+\left(b^{2}-y^{2}\right)^{2} c_{2}(x)
$$

Lower bounds

- Obviously, quality of solution depends on
\triangleright family of functions chosen
\triangleright number of terms used, n
- Could test convergence by increasing n and seeing the difference in $\left|F\left\{y_{n+1}\right\}-F\left\{y_{n}\right\}\right|$, but this is not guaranteed to be a good indication.
- A better way to assess convergence is to have a lower-bound

$$
\text { lower bound } \leq F\{y\} \leq \text { upper bound }
$$

- use complementary variation principle
- but its a bit complicated for us to cover here.

[^0]: Variational Methods \& Optimal Control: lecture 13 - p.11/22

