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Integral Constraints

Integral constraints are of the form

/g(x, y,y)dx = congt

The standard example of such a problem is Dido’s problendjiggeto us
referring to such constraints a®perimetric. We solve these by
introducing the functional analogy of a Lagrange multiplie
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Constraints

We now include additional constraints into the problems:
» Integral constraints of the form

/g(x, y,Y)dx = congt

e.g., the Isoperimetric problem.
» Holonomic constraints, e.qy(x,y) =0
» Non-holonomic constraints, e.@(X,y,y) =0
» We won't consider inequality constraints until later.
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Dido’s problem

» Dido (Carthaginian queen) fled to North Africa, where a lattakf
offered her as much land as an oxhide could contain.

» Cut the oxhide into thin strips, and then use them to surr@und
patch of ground (in which to found Carthage).

» Obviously, she wanted to contain the largest possible lama a

» Given a fixed length of oxhide, what shape would encompass the
largest area?

» Hengist and Horsa had the same problem (semi-mythologiteis
in southern England around Vortigen, preceding Arthur)
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Isoperimetric problems

Dido’s problem falls into the class adoperimetric problems.

» iso- (from same) and perimetric (from perimeter), roughkaming
“same perimeter”.

» in general, such problems involve a constraint

e.g. the length of the oxhide strip
But the constraint is not always to fix the perimeter length,
sometimes the constraint does not even involve a length,

>
>
>
> but the term isoperimetric is still used.
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A simplified form of Dido’s problem

Imagine that the two end-points are fixed, along the coastl{@ge was a
great sea power), and we wish to encompass the largest |goastia
inland with a fixed lengtt.. We can write this problem as maximize the
area

F{y}—/:ydx

encompassed by the curyesuch that the the curyehas fixed length.,
e.g. as before the length of the curve is

ol = [ VIryPe-L

subject to the end-point conditiogéx) = 0 andy(x;) = 0.
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Isoperimetric problems formulation

We can write the isoperimetric problems as the problem ofriigpd
extremals of the functiond : C?[xo, x;] — IR given by

F{y}z/:wx,y,y)dx

with all the usual conditions (e.g. on end points, and catirs
derivatives) but in addition we must satisfy the extra fiomal constraint

Gly} = /:g(w,x/)dx: L
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A simplified form of Dido’s problem

F{y}—/:ydx

subject to

G{y} :/):\/1+y’2dx: L

y(—a) = 0 andy(a) = 0.

y(x)

WV

4

i

A\

For simplicity take 2< L < 12
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Approach

As before
» we perturb the curve, and consider the first variation,

» but we cannot perturb by an arbitrary functiem, because then the
constrainitG{y+¢&n} = L might be violated.

» solution: use the same approach as we did earlier with cinstt
maximization, e.g. use Lagrange multipliers
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Lagrange multipliers in functionals

To maximize
X1
Flvh= [ foyy)
subject to

G{y}—/jg(x,y,y)dx—L

we instead consider the problem of finding extremals of

H{y}z/leh(x,y,wdx:/:f<x,y,y>+xg<x,y,y>dx
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Lagrange multiplier refresher

Problem: find the minimum (or maximum) é{x) for x € IR" subject the
constraints

g(x)=0, i=1,....m<n

Solution require$ agrange Multipliers. Minimize (or maximize) a new
function (ofm+ n variables)

NOA) = 10 + 3 M),

where; are the undetermined Lagrange multipliers.
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Euler-Lagrange equations

The Euler-Lagrange equations become

d oy on
dx\ay ) oy

whereh = f +Ag, andA is the unknown Lagrange multiplier.
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Dido’s problem

Hiv = [y a2

S0
oh

y ~ !

dony _d
dx \oy /] dx /1+y?
and the Euler-Lagrange equations are

d

dx \/1+y? =t

;i
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Dido’s problem

Integrating WRTx again

N 1
y = /X\/m“'X

Change variables o= (x+¢;)/A = sin(0), then

y — /sin(G)F;m%de
— A / sin(6)de
= —Aco90)+c,

whereA, ¢; andc; are determined by the two end-points, and the length of
the curvel.
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Dido’s problem

Integrating WRTx we get
y
V1t+y?

writing for the momenk= (x+¢;)/A

= (X+c1)/A
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Dido’s problem: constants

From the solution y

X+c€1 = Asin(0)
y = —Acog0)+c, x)

= rcos(g+c,

we may draw a sketch of the so-
lution, and clearly we can iden-
tify —A =r the radius of a circle,

of which our region is a segment.

Note we deliberately started with
2a<L<ma
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Dido’s problem: constants

We can see that the arc length of y
the enclosing curve will be

L =26;r ylx)= rcos(g+c,

and that the value; = a deter-
mines that

r=a/sind;
which combined give

L = 2a0;/sin6;

from which we may determin@;.
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A realistic coast

What effect would a realistic coastline have?

Coastc(X).

X Yylx) =rcos(®) + c,
Area= / y—cadx '
Xo

But note thatc doesn’t depend
onyory, so the Euler-Lagrange
equations are unchanged, pro-
vided c(x) < y(x) for the ex-
tremal.
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Dido’s problem: constants

We determined, from

. 2a 1
sinB; = —6;
L 0.8
then we may compute 06
r=a/sin(6,) 04
and, we can easily see that 0.2 sn@®)
. — SI
----2a0/L
Co = —COS(6y) % 05 1 15

from the condition thay; = 0.
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A realistic coast

Note the caveatc(x) < y(x). If this is not satisfied then the area integral
includes negative components, so the problem we are marigriz not
really Dido’s problem any more (she can’t own negative greas

We really want to maximize

X1
Area:/ [y—c]* dx
Xo

where

X+ = X, forx>0
] 0, otherwise.

But this function does not have a derivativexat 0.
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The real Carthage (modern Tunis)

36.858197, 10.322342 - Google Maps http://maps.google.com.au/maps?ie=UTF8&z=5&I1=-25...

GOUSI@

gg{n,{-v[ e ©2008 Google - Map data ©2088 Basarsoft, Tele Atlas, AND, Europa Technologies - Terths of Use
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Catenary of fixed length

We instead seek extremals of
X1
H{y} :/xo (Y+A)V1+y2ax

Notice that the above has no explicit dependencr, @md so we may
compute

oh
H(yy) = 5, —h= cons

(apologies for reusing the notatiéhhere).
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Catenary redux

We previously computed the shape of a suspended wire, whemuireo
constraints on the length of the wire.

What happens to the shape of the suspended wire when we figrtpthl
of the wire?

As before we seek a minimum for the potential energy

X1
Wo{y} =mg /XO yv/1+y2dx
but now we include the constraint that the length of the vale ie.g.

G{y}:/XOXl\/ler’zdx:L
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Catenary of fixed length

(y+A)y?
V1ty?

Perform the change of variablas=y+ A, and note that' =y so that the
above can be rewritten as

H(y,y) = — (y+A)v/1+y? = congt

/2

uu
———-uV1l+u2=c
V1+u? '
and as before (as with the earlier catenary example), tdisces to
2
u
14 u?
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Equation of Catenary of Fixed Length

This is exactly the same equation (ipas we had previously for the
catenary iry. So the result is a catenary also, but shifted up or down by an
amount such that the length of the wird.is

y = u—A

- clcosh<xcz> .\
C1

so we have three constants to determine.
» we have two end points
» we have the length constraint
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Catenary of fixed length

All catenaries are valid, but onensitur al

15
— =252
. —1=2.10
—1=2.30
— =250
—1=2.70
0.5 —1=2.90
i E— 0 05 1

The red curve shows the natural catenary (without lengtistcaimts), and
the blue curves show other catenaries with different lemgth
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The length of the Catenary

As before (taking the even solution wiyh = y1)
1
Ly} = /1\/1+V2dx
1
= / coshx/cy) dx
1

= ¢ [sinh(x/c1)]t,
— 2csinh(1/c)

But now we can use this as a constraint to calculagvenL. Once we
know c; we can calculata to satisfy end heightg, = y;.
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Calculating the functional

As before its easy to calculakey},

F{yl — [ 11(c1 cost{x/c1) —A\)y/1+ sint(x/cy) dx

— /11 c1cost(x/c;) — Acosh{x/cy) dx

= C+ %sinh(Z/cl) —2\cgsinh(1/cy)

Note however, that this assumes that 0 is possible. If not, then we
have to truncaty and calculate the integral numerically.
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Degenerate solution

The degenerate solution has the wire lying on the groundybutave to
add in the energy of the wire leading from the pole to the gdoaireach
end

Yo Y1
Fiy} = / sds+/ sds
0 0
Y5 Vi

- 272

» This is the energy of the degenerate solution
» Itisn’'t necessarily the minimum energy configuration
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Energy as a function of length

5

10

Leng_]th, L
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Calculating the functional (energy)

5 ' ' .
—Y, = 1.250
4.5} —Y, = 1.509(
y, = 1.750
) —Y, = 2.000[!
3 4
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Pathologies

Notice in both cases above

» the approach only works for certain rangegd of
» if Listoo small, there is no physically possible solution.

> e.g. if wire lengthL < x; —Xo
> e.g. if oxhide length. < x; — X

» if L is too large in comparison ta, the solution may have our wire
dragging on the ground.
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Rigid Extremals

A particular problem to watch for aregid extremals

» Extremals that cannot be perturbed, and still satisfy tmsizaint.
» For example

1
Gly} :/O Vity2id=12
with the boundary constrainyg0) = 0 andy(1) = 1.

The only possiblg to satisfy this constraint ig(x) = X, so we
cannot perturb around this curve to find conditions for véabl
extremals.
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Interpretation ofA

» Consider finding extremals for

H{y} = F{y} +AG{y},

where we icludés to meet an isoperimetric constrai@{y} = L
» One way to think abouk is to think of the above as trying to
minimizeF{y} andG{y} —L
> A is a tradeoff betweeR andG
> if A is big, we give a lot of weight t&
> if A is small, then we give most weight o

» SoA might be thought of as how hard we have to “pull” towards the
constraint in order to make it
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Rigid Extremals

Rigid extremal cases have some similarities to maximinadifca
function, where the constraints specify a single point:

» e.g. maximizef (x,y) = x4y, under the constraint that + y*> = 0.

In the extremal case above, the constraint, and the endsdeave only
one choice of functiony(x) = x
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Interpretation ofA

» For example:
> in the catenary problem, the sizelofs the amount we have to
shift the cosh function up or down to get the right length.
> whenA = 0 we get the natural catenary
* i.e., in this case, we didn’'t need to change anything to get
the right shape, so the constraint had no affect
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Interpretation ofA

Write the problem (including the constant) as minimise

Hiy} = [ T+A(@-k)dx
for constank =L/ [ 1dx, then

oH

Fri

» we can also think ok as the rate of change of the value of the
optimum with respect tl
» whenA =0, the functionaH has a stationary point

> e.g., in the catenary problem this is a local minimum
corresponding to the natural catenary
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