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Free end points

In previous problem, we allow(xy) andy(x;) to vary but kepio andx;
fixed.
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Free end points:
Freex, y andy

We now allowx to vary as well, although we may apply some condition
on the relationship betweerandy, for instance that the end point must

lie on a curve. In these cases we often rename our extrennal €,z
themtransversals.
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Example: Cantilever
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But this can fail in some cases, for instance, if the left ehithe cantilever

isn’t clamped (to have zero slope) then the right end cangfveely, and
X1 won't be fixed.

Variational Methods & Optimal Control: lecture 18 — p.4/33




Free end points

In some problems we even want to allegandx; to vary.
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Example: Orbit Transfer Problem
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Example: shortest path

There may still be some constraints on the possible positién
end-points: e.g., shortest path between two curves
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Approach
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Extension ofy

DefinexXp = min(xp,Xo) andxg = max(Xq, X1)
We can use Taylor’s theorem to exteyndnto the interval%y, %], e€.g.

y(x) 2 if X € [Xo, %]
YO =4 y0xa)+ (X—x0)y (x) + %wm) oo if xE (¥, %)
Y(%0) + (X0 = X)Y (X0) + Py (x0) ++++ if X € [Ro,%0)

For instance, if the perturbed end-poxgt<xo, we get
Y(%o) = y(%0) — €XoY (Xo) +O(e?)

We can likewise extend the perturbed cuyve ~
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Distance

However, we can no longer define distance as simply
» previous definition d(y.9) = ly—yi

where the norm could be defined in a number of ways, but an
example might be

ly—9) = /XO " Iy(%) —9()| dx

> Xo andx; can vary now, so the range of integral is not well defined
anymore

» if we just extendy to new interval, we don’t take proper account of
distortion from difference ix end-points
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Extension ofy
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New distance

New distance metric

d(y,¥) = [ly—Yll + Po — Po| + [p1 — Pu|
where we define

[Pk — Bl = v/ (% — Re)2+ (Vi — Yi)2

We want allowed perturbations to be closg/t@ccording to the distance
defined above), but don'’t specify the end-points exceptdaire they be

O(¢) apart, e.qg. R = X+ X
Y« = Ykte&%

so that|px — Pu| = &4/ X2+ Y2, fork=0,1
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Forming the first variation

PR = [ ) [ ty)ox
X1+EX1 X1
:/ f(x,y,¥)dx— / f(x,y,y)dx

_ :f(x,y,y/)—f(x,y,x/)dx

X1+EX1 Xo+EXo
+/ f(xa)7737’) dx_/ f(X,)A’a)A/) dx
X1

X0
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Forming the first variation

Therefore the first variation is

ot x /af dof
sy = [ngy] 405y~ deay)
+X1 f(X,y,)/)|X1 _XO f(xaya)/)‘xo +O(8)

But note that[r] %K: is no longer simple to calculate because we don't fix
Xo OF X;.

» how can we learmg andx,?

» we need a new natural boundary condition that will give us.thi
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Forming the first variation

From earlier arguments

af |« . /of d of
/ f(x,¥,Y)—f(xyy)dx= s[ ay’ +/Xon<a—y—&w>dx]

and as is small
X1+EXy o 2
[ g = £ fixwy)l, + O
1

Xo+€Xo
[ 9918 = e 0y + O

Variational Methods & Optimal Control: lecture 18 — p.14/33

End-point compatibility

The perturbed end-points, and perturbation functjonust satisfy certain
conditions to be compatible.
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End-point compatibility

Remember that
X = X+&Xo
Yo = Yo+eYo

Notice that

Yo = J(Xo) = Y(Xo +€Xo) = Y(Xo +€Xo) + €N (X0 + EXo)
From Taylor’s theorem, for smadl
y(Xo+EX) = Y(Xo)+EXoY (%) +O(€?)
82

= Yo+eXoY (%) +O(&%)
eN(xo+eX) = &n(x)+O0(e)
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The First Variation

Substituting the end-point compatibility constraintitite first variation
we get

af 1™ a  /of  d of
o = gy ]+ [0 (5 ey )

+X1 f(X,y,)/)!xl - XO f(x7y7y,>‘x0 +O(8>

_ / of doafy
= ), "\ 5y " axay

of of
+Y1W . OW N
of of
% (f—yw) % (f—yw) ot
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End-point compatibility

So
Yo+€Y = Yo+EeXoy (Xo)+En(Xo)+O(€?)
e = &Xoy (%) +&n(x) +O(e?)
n(x) = Yo—X (X)+O()
Similarly

nx) = Yi—Xwy(x1)+O(€)
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Deriving Euler-Lagrange equations

The end-points are free, but this includes the case wheyesthen the
extremal, i.e. we can alwayfioosehe end-points so thag = Yx = 0, for
k=0, 1. For instance, wheXy = X; = Y1 = Y, = 0, then the first variation

collapses to
x of d of
Fny = . ”(a—y—d—xw) dX

And so the E-L equations hold here.

Likewise, whenX; =Y; =Y, = 0, butX, # 0 we can see that this creates
one of the natural boundary condition

(113,

Xo
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Notation

Some notation
» Hamiltonian
H=ydl g
oy’
we saw the Hamiltoniahdl earlier.

» pis often identified with momentum of a particle, but we canitise
for other systems as well.

_of
» we’'ll replace the notation®y andY for k = 0,1 with

X(X) =X« and dy(yk) = Y
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Including constraints

Typically the end-points satisfy some set of constraimishé most
general formg(xo, Yo, X1, Y1) = 0, but often these constraints separate to
constraint a single end-point, e.g. we have constraints

Ok(X},¥j) =0
for j = 0,1, and some number of constraints, typic&ily 4.

For example, the fixed end-point problem has constraintsiecify the
values of(Xo, Yo) and(xy,y1) precisely.
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The Euler-Lagrange equations

As before, we can always choose the end-points sodhatYi = 0, for
k=0,1, so that the Euler-Lagrange equation

must be satisfied plus the additional constraints:

pdy — Hox * =0
[poy—H&],
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Separable constraints

Where the constraints for one end point are not linked toetodshe
other, we may separate the conditions to get

pdy — HE')x‘Xo =0

pdy—Hox| = 0

X1

Note not all possible end constraints make sense!
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Simple example: fixed

We have already considered this condition:
» Ox=0anddy+#0
» conditions

p6y—H6x‘ =0
Xi
reduce down to
p=21 =0
ay’ %

at the relevant end points.
» thatis just the natural boundary conditions we derivedexarl
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Simple example: fixeg

Minimise %
F{y}:/ 1+y?dx
0

subject toy(0) = 1 andy(x1) = L > 1, but withx; unspecified.

» We could derive the E-L equations, but note that this probem
autonomous (n&@ dependence) so

H = const
» The free end point at; means that

H| =0

X1

» Hence for allx € [0,x;] we haveH =0
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Simple example: fixeg

Imagine a problem where we have to get to a fixed stabeit the point at
which that happens is variable, so that

» Oy =0anddx+#0
» conditions

reduce down to

at the relevant end points.
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Simple example: fixegt

Minimise
X1
Fiy) = [ 1+y2x
0
So
_ ﬂ_ _ 2 /2 _1_\J2_ 1 _
H_)/ay, f=2yc—y°-1=y“-1=0
Hence

y==+1
subject toy(0) = 1 andy(x;) =L > 1 sowe take/ = 1

y=x+1
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Extension to several dep. var.s

Hm—fummm

If F is stationary at] then it can be shown that the Euler-Lagrange

equations
doL oL _0

dtag, ook
fork=1,...,nand that at the end pointgandt,

n n
Z pdak — Hot = 0 wherepy = i andH = Z C'Jlkpk —L
K=1 00, K=1
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Simple example

As earlier we can combine the E-L equations to get
4 s

(2 ) 4q2 —Q= 0

which has solutions in the form

O2(t) = c18M + e + c3cogmt) + ¢4 sin(mt)

where
_ 4 1+ 1
1 1 .
, = 44/=——==4im
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Simple Example

Find extremals of
i . s
Flah= [ (6+ (@17 +a+ae) dt

for q(0) = go andq(1) free, i.e., we can finish anywhere on the plane
t=1.

The Euler-Lagrange equations are

24, -201—q =

2q2_q1 =
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Simple example

Natural boundary conditions

n
Z pkOQk — Hot =0
k=1

t=1

butt = 1 is fixed at the RHS, s& = 0, and we can varg independently,
so we can take any combinationa = 0, and hence all of thp, = 0 at
t=1,ie.,

oL

— =0
00

Pkli—1 =
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Simple example

oL

Peli—1 = =+

—=0
a0,

So

p1 = 2611 =0
P2 = 2(G,-1)=0
The natural boundary conditions reduce to
(.]1 =0
Q2 =

Combine with the conditions at the start point we have enaagistraints
to find the constants of integration.
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