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Free end points:
Freex, y andy′

We now allowx to vary as well, although we may apply some condition
on the relationship betweenx andy, for instance that the end point must
lie on a curve. In these cases we often rename our extremals, and call
themtransversals.
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Free end points

In previous problem, we allowy(x0) andy(x1) to vary but keptx0 andx1

fixed.

x

y

1(x ,y )1
y = y(x)

y = y + 

0(x ,y )0

ε η
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Example: Cantilever
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But this can fail in some cases, for instance, if the left end of the cantilever
isn’t clamped (to have zero slope) then the right end can swing freely, and
x1 won’t be fixed.
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Free end points

In some problems we even want to allowx0 andx1 to vary.

0(x ,y )0

1(x ,y )1

1(x ,y )1

0(x ,y )0

x

y

y = y(x)

y = y + ε η
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Example: shortest path

There may still be some constraints on the possible positions of
end-points: e.g., shortest path between two curves

B

A

Γ
Γ0
1
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Example: Orbit Transfer Problem

r(T)

r(t)

r(0)

final orbit

initial
orbit
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Approach

1(x ,y )1

1(x ,y )1

0(x ,y )0

y = y + ε η0(x ,y )0

y

xX X0 1

0

Y

Y

ε 1

ε 

ε ε 

y = y(x)
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Extension ofy

Definex̃0 = min(x0, x̂0) andx̃1 = max(x1, x̂1)
We can use Taylor’s theorem to extendy onto the interval[x̃0, x̃1], e.g.

y(x) =











y(x) if x∈ [x0,x1]

y(x1)+(x−x1)y′(x1)+
(x−x1)

2

2 y′′(x1)+ · · · if x∈ (x1, x̃1]

y(x0)+(x0−x)y′(x0)+
(x0−x)2

2 y′′(x0)+ · · · if x∈ [x̃0,x0)

For instance, if the perturbed end-point ˆx0 < x0, we get

y(x̂0) = y(x0)− εX0y′(x0)+O(ε2)

We can likewise extend the perturbed curve ˆy.
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Extension ofy

X0ε 

0(x ,y )0

0(x ,y )0

εη(x )0
0Yε 

  X y   0−ε 

y = y + ε η

y(x)

x

y
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Distance

However, we can no longer define distance as simply
previous definition d(y, ŷ) = ||y− ŷ||
where the norm could be defined in a number of ways, but an
example might be

||y− ŷ||=
∫ x1

x0

|y(x)− ŷ(x)|dx

x0 andx1 can vary now, so the range of integral is not well defined
anymore

if we just extendy to new interval, we don’t take proper account of
distortion from difference inx end-points
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New distance

New distance metric

d(y, ŷ) = ||y− ŷ||+ |p0− p̂0|+ |p1− p̂1|
where we define

|pk− p̂k|=
√

(xk− x̂k)2+(yk− ŷk)2

We want allowed perturbations to be close toy (according to the distance
defined above), but don’t specify the end-points except to require they be
O(ε) apart, e.g. x̂k = xk+ εXk

ŷk = yk+ εYk

so that|pk− p̂k|= ε
√

X2
k +Y2

k , for k= 0,1
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Forming the first variation

F{ŷ}−F{y} =
∫ x̂1

x̂0

f (x, ŷ, ŷ′)dx−
∫ x1

x0

f (x,y,y′)dx

=
∫ x1+εX1

x0+εX0

f (x, ŷ, ŷ′)dx−
∫ x1

x0

f (x,y,y′)dx

=

∫ x1

x0

f (x, ŷ, ŷ′)− f (x,y,y′)dx

+

∫ x1+εX1

x1

f (x, ŷ, ŷ′)dx−
∫ x0+εX0

x0

f (x, ŷ, ŷ′)dx
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Forming the first variation

From earlier arguments

∫ x1

x0

f (x, ŷ, ŷ′)− f (x,y,y′)dx= ε

[

η
∂ f
∂y′

∣

∣

∣

∣

x1

x0

+

∫ x1

x0

η
(

∂ f
∂y

− d
dx

∂ f
∂y′

)

dx

]

and asε is small

∫ x1+εX1

x1

f (x, ŷ, ŷ′)dx = εX1 f (x,y,y′)|x1
+O(ε2)

∫ x0+εX0

x0

f (x, ŷ, ŷ′)dx = εX0 f (x,y,y′)|x0
+O(ε2)
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Forming the first variation

Therefore the first variation is

δF(η,y) =

[

η
∂ f
∂y′

]x1

x0

+

∫ x1

x0

η
(

∂ f
∂y

− d
dx

∂ f
∂y′

)

dx

+X1 f (x,y,y′)|x1
−X0 f (x,y,y′)|x0

+O(ε)

But note that
[

η ∂ f
∂y′

]x1

x0

is no longer simple to calculate because we don’t fix

x0 or x1.

how can we learnx0 andx1?

we need a new natural boundary condition that will give us this.
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End-point compatibility

The perturbed end-points, and perturbation functionη must satisfy certain
conditions to be compatible.

1(x ,y )1

1(x ,y )1

0(x ,y )0

y = y + ε η0(x ,y )0

y

xX X0 1

0

Y

Y

ε 1

ε 

ε ε 

y = y(x)
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End-point compatibility

The perturbed end-points, and perturbation functionη must satisfy certain
conditions to be compatible.

X0ε 

0(x ,y )0

0(x ,y )0

εη(x )0
0Yε 

  X y   0−ε 

y = y + ε η

y(x)

x

y
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End-point compatibility

Remember that

x̂0 = x0+ εX0

ŷ0 = y0+ εY0

Notice that

ŷ0 = ŷ(x̂0) = ŷ(x0+ εX0) = y(x0+ εX0)+ εη(x0+ εX0)

From Taylor’s theorem, for smallε

y(x0+ εX0) = y(x0)+ εX0y′(x0)+O(ε2)

= y0+ εX0y′(x0)+O(ε2)

εη(x0+ εX0) = εη(x0)+O(ε2)
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End-point compatibility

So

y0+ εY0 = y0+ εX0y′(x0)+ εη(x0)+O(ε2)

εY0 = εX0y′(x0)+ εη(x0)+O(ε2)

η(x0) = Y0−X0y′(x0)+O(ε)

Similarly

η(x1) = Y1−X1y′(x1)+O(ε)
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The First Variation

Substituting the end-point compatibility constraints into the first variation
we get

δF(η,y) =

[

η
∂ f
∂y′

]x1

x0

+

∫ x1

x0

η
(

∂ f
∂y

− d
dx

∂ f
∂y′

)

dx

+X1 f (x,y,y′)|x1
−X0 f (x,y,y′)|x0

+O(ε)

=

∫ x1

x0

η
(

∂ f
∂y

− d
dx

∂ f
∂y′

)

dx

+Y1
∂ f
∂y′

∣

∣

∣

∣

x1

−Y0
∂ f
∂y′

∣

∣

∣

∣

x0

+X1

(

f −y′
∂ f
∂y′

)
∣

∣

∣

∣

x1

−X0

(

f −y′
∂ f
∂y′

)
∣

∣

∣

∣

x0

+O(ε)
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Deriving Euler-Lagrange equations

The end-points are free, but this includes the case where they sit on the
extremal, i.e. we can alwayschoosethe end-points so thatXk =Yk = 0, for
k= 0,1. For instance, whenX0 = X1 =Y1 =Y2 = 0, then the first variation
collapses to

δF(η,y) =
∫ x1

x0

η
(

∂ f
∂y

− d
dx

∂ f
∂y′

)

dx

And so the E-L equations hold here.
Likewise, whenX1 =Y1 =Y2 = 0, butX0 6= 0 we can see that this creates
one of the natural boundary condition

X0

(

f −y′
∂ f
∂y′

)
∣

∣

∣

∣

x0

= 0
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Notation

Some notation

Hamiltonian
H = y′

∂ f
∂y′

− f

we saw the HamiltonianH earlier.

p is often identified with momentum of a particle, but we can useit
for other systems as well.

p=
∂ f
∂y′

we’ll replace the notationsXk andYk for k= 0,1 with

δx(xk) = Xk and δy(yk) =Yk
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The Euler-Lagrange equations

As before, we can always choose the end-points so thatXk =Yk = 0, for
k= 0,1, so that the Euler-Lagrange equation

∂ f
∂y

− d
dx

∂ f
∂y′

= 0

must be satisfied plus the additional constraints:
[

pδy−Hδx
]x1

x0

= 0
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Including constraints

Typically the end-points satisfy some set of constraints, in the most
general formg(x0,y0,x1,y1) = 0, but often these constraints separate to
constraint a single end-point, e.g. we have constraints

gk(x j ,y j) = 0

for j = 0,1, and some number of constraints, typicallyk< 4.

For example, the fixed end-point problem has constraints that specify the
values of(x0,y0) and(x1,y1) precisely.
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Separable constraints

Where the constraints for one end point are not linked to those of the
other, we may separate the conditions to get

pδy−Hδx
∣

∣

∣

x0

= 0

pδy−Hδx
∣

∣

∣

x1

= 0

Note not all possible end constraints make sense!
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Simple example: fixedx

We have already considered this condition:

δx= 0 andδy 6= 0

conditions

pδy−Hδx
∣

∣

∣

xi

= 0

reduce down to

p=
∂ f
∂y′

∣

∣

∣

∣

xi

= 0

at the relevant end points.

that is just the natural boundary conditions we derived earlier
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Simple example: fixedy

Imagine a problem where we have to get to a fixed statey, but the point at
which that happens is variable, so that

δy= 0 andδx 6= 0

conditions

pδy−Hδx
∣

∣

∣

xi

= 0

reduce down to

H
∣

∣

∣

xi

= 0

at the relevant end points.
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Simple example: fixedy

Minimise
F{y}=

∫ x1

0
1+y′2 dx

subject toy(0) = 1 andy(x1) = L > 1, but withx1 unspecified.

We could derive the E-L equations, but note that this problemis
autonomous (nox dependence) so

H = const

The free end point atx1 means that

H
∣

∣

∣

x1

= 0

Hence for allx∈ [0,x1] we haveH = 0
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Simple example: fixedy

Minimise

F{y}=
∫ x1

0
1+y′2 dx

So

H = y′
∂ f
∂y′

− f = 2y′2−y′2−1= y′2−1= 0

Hence
y′ =±1

subject toy(0) = 1 andy(x1) = L > 1 so we takey′ = 1

y= x+1
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Extension to several dep. var.s

F{q}=
∫ t1

t0
L(t,q,

.
q)dt

If F is stationary atq then it can be shown that the Euler-Lagrange
equations

d
dt

∂L

∂.qk

− ∂L
∂qk

= 0

for k= 1, . . . ,n and that at the end pointst0 andt1

n

∑
k=1

pkδqk−Hδt = 0 wherepk =
∂L

∂.qk

andH =
n

∑
k=1

.
qkpk−L
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Simple Example

Find extremals of

F{q}=
∫ 1

0

(.
q

2
1+(

.
q2−1)2+q2

1+q1q2

)

dt

for q(0) = q0 andq(1) free, i.e., we can finish anywhere on the plane
t = 1.

The Euler-Lagrange equations are

2
..
q1−2q1−q2 = 0

2
..
q2−q1 = 0
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Simple example

As earlier we can combine the E-L equations to get

4q(4)2 −4
..
q2−q2 = 0

which has solutions in the form

q2(t) = c1eµ1t +c2eµ2t +c3cos(mt)+c4sin(mt)

where

µ1,µ2 = ±
√

1
2
+

1√
2

µ3,µ4 = ±
√

1
2
− 1√

2
=±im
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Simple example

Natural boundary conditions

n

∑
k=1

pkδqk−Hδt

∣

∣

∣

∣

∣

t=1

= 0

but t = 1 is fixed at the RHS, soδt = 0, and we can varyqk independently,
so we can take any combination ofδqk = 0, and hence all of thepk = 0 at
t = 1, i.e.,

pk|t=1 =
∂L

∂.qk

= 0
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Simple example

pk|t=1 =
∂L

∂.qk

= 0

So

p1 = 2
.
q1 = 0

p2 = 2(
.
q2−1) = 0

The natural boundary conditions reduce to

.
q1 = 0
.
q2 = 1

Combine with the conditions at the start point we have enoughconstraints
to find the constants of integration.
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