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Conservation Laws
One of the more exciting things we can derive relates to fundamental
physics laws: conservation of energy, momentum, and angular
momentum. We can now derive all of these from an underlying principle:
Noether’s theorem.
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Hamilton’s principle

We now have a group of equivalent methods
◮ Euler-Lagrange equations

◮ Hamilton’s equations

◮ Hamilton-Jacobi equation

We saw earlier that these can give us other methods
◮ Hamilton’s principle⇒ Newton’s laws of motion

◮ WhenL is not explicitly dependent ont, then the HamiltonianH is
constant in time.

⊲ conservation of energy
⊲ this is an illustration of a symmetry in the problem appearing in

the Hamiltonian
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Conservation laws

Given the functional

F{y}=
∫ x1

x0

f (x,y,y′, . . . ,y(n))dx

if there is a functionφ(x,y,y′, . . . ,y(k)) such that

d
dx

φ(x,y,y′, . . . ,y(k)) = 0

for all extremals ofF, then this is called akth order conservation law

◮ use obvious extension for functionals of several dependentvariables.
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Conservation law example

Given the functional

F{y}=
∫ x1

x0

f (y,y′)dx

where f is not explicitly dependent ont, we know that the Hamiltonian

H = y′
∂ f
∂y′

− f

is constant, and so
dH
dx

= 0

is a first order conservation law for the system.
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Several independent variables

For functionals of several independent variables, e.g.

F{z}=
∫∫

Ω
z(x,y)dxdy

the equivalent conservation law is

∇ ·φ = 0

For some functionφ(x,y,z,z′, . . . ,z(k)).

◮ Results here can be extended to these cases, but we won’t lookat
them here.
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Conservation laws

◮ physically interesting
⊲ tell you about system of interest

◮ can simplify solution

⊲ φ(x,y,y′, . . . ,y(k)) = const is an orderk DE, rather than E-L
equations which are order 2n

◮ φ(x,y,y′, . . . ,y(k)) = const is often called thefirst integral of the
E-L equations
⊲ RHS is a constant of integration (determined by boundary

conditions)

◮ how do we find conservation laws?
⊲ Noether’s theorem
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Variational symmetries

The key to finding conservation laws lies in finding symmetries in the
problem.
◮ “symmetries” are the result of transformations under whichthe

functional is invariant

◮ E.G. time invariance symmetry results in constantH

◮ more generally, take a parameterized family of smooth transforms

X = θ(x,y;ε), Y = φ(x,y;ε)

where
x = θ(x,y;0), y = φ(x,y;0)

e.g. we get the identity transform forε = 0

◮ examplestranslations androtations
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Jacobian

The Jacobian is

J =

∣

∣

∣

∣

∣

θx θy

φx φy

∣

∣

∣

∣

∣

= θxφy −θyφx

◮ smooth: if functionsx andy have continuous partial derivatives.

◮ non-singular: if Jacobian is non-zero (and hence an inverse
transform exists)

Now for ε = 0, we require the identity transform, soJ = 1. Also, we
require a smooth transform, soJ is a smooth function ofε, and so for
sufficiently small|ε|, the transform is non-singular.
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Example transformations

◮ translations (ε is the translation distance)

X = x+ ε Y = y

or X = x Y = y+ ε

both have Jacobian
J = 1

and inverse transformations

x = X − ε y = Y

or x = X y = Y − ε
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Example transformations

◮ translations (ε is the translation distance)

X = x+ ε Y = y

ε(X,Y)=(x+  ,y)

y

x

ε
(x,y)
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Example transformations

◮ translations (ε is the translation distance)

X = x+ ε Y = y

ε

Y y

X x

(X,Y)=(x+  ,y)ε
(x,y)
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Example transformations

◮ rotations (ε is the rotation angle)

X = xcosε+ ysinε Y =−xsinε+ ycosε

has Jacobian
J = cos2 ε+sin2 ε = 1

and inverse

x = X cosε−Y sinε y = X sinε+Y cosε
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Example transformations

◮ rotations (ε is the rotation angle)

X = xcosε+ ysinε Y =−xsinε+ ycosε
y

x
ε

(x,y)

Y

X
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Example transformations

◮ rotations (ε is the rotation angle)

X = xcosε+ ysinε Y =−xsinε+ ycosε

To derive this, change coordinates to polar coordinates

x = r cos(θ) and y = r sin(θ)

Under a rotation byε, the new coordinates(X ,Y) are

X = r cos(θ− ε) and Y = r sin(θ− ε)

Use trig. identities cos(u− v) = cosucosv+sinusinv and
sin(u− v) = sinucosv−cosusinv, to get

X = r cos(θ)cos(ε)+ r sin(θ)sin(ε) = xcos(ε)+ ysin(ε)
Y = r sin(θ)cos(ε)− r cos(θ)sin(ε) = ycos(ε)− xsin(ε)
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Transformation of a function

Given a functiony(x), we can rewriteY (X) using the inverse
transformation, e.g.

φ−1(X ,Y(X);ε) = y(x) = y(θ−1(X ,Y ;ε))

For example, taking the curvey = x under rotations

X sinε+Y cosε = X cosε−Y sinε

which we rearrange to get

Y (X) =
cosε−sinε
cosε+sinε

X

Similarly we can deriveY ′(X)
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Transform invariance

If ∫ x1

x0

f (x,y,y′(x))dx =
∫ X1

X0

f (X ,Y,Y ′(X))dX

for all smooth functionsy(x) on [x0,x1] then we say that the functional in
invariant under the transformation.

◮ also calledvariational invariance

◮ The transform is called avariational symmetry

◮ Related to conservation laws

Also note that the E-L equations are invariant under such a transform, e.g.
they produce the same extremal curves.
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Infinitesimal generators

For smallε we can use Taylor’s theorem to write

X = θ(x,y;0)+ ε
∂θ
∂ε

∣

∣

∣

∣

(x,y;0)

+O(ε2)

Y = φ(x,y;0)+ ε
∂φ
∂ε

∣

∣

∣

∣

(x,y;0)

+O(ε2)

Define the infinitesimal generators

ξ(x,y) =
∂θ
∂ε

∣

∣

∣

∣

(x,y;0)

η(x,y) =
∂φ
∂ε

∣

∣

∣

∣

(x,y;0)

and then for smallε
X ≃ x+ εξ
Y ≃ y+ εη
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Examples

◮ translations:

(X ,Y) = (x+ ε,y) ⇒ (ξ,η) = (1,0)

or (X ,Y) = (x,y+ ε) ⇒ (ξ,η) = (0,1)

◮ rotations:

X = θ(x,y;ε) = xcosε+ ysinε Y = φ(x,y;ε) =−xsinε+ ycosε

So

ξ =
∂θ
∂ε

∣

∣

∣

∣

ε=0

= −xsinε+ ycosε|ε=0 = y

η =
∂φ
∂ε

∣

∣

∣

∣

ε=0

= −xcosε− ysinε|ε=0 = −x
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Emmy Noether

◮ Amalie Emmy Noether, 23 March 1882 – 14 April

1935

◮ Described by Einstein and many others as the most

important woman in the history of mathematics.

◮ Most of her work was in algebra

◮ Worked at the Mathematical Institute of Erlangen

without pay for seven years

◮ Invited by David Hilbert and Felix Klein to join the

mathematics department at the University of

Göttingen, a world-renowned center of

mathematical research. The philosophicqal faculty

objected, however, and she spent four years

lecturing under Hilbert’s name.
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Noether’s theorem

Suppose thef (x,y,y′) is variationally invariant on[x0,x1] under a
transform with infinitesimal generatorsξ andη, then

ηp−ξH = const

along any extremal of

F{y}=
∫ x1

x0

f (x,y,y′)dx
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Example (i)

Invariance in translations inx, i.e.

(X ,Y) = (x+ ε,y)
(ξ,η) = (1,0)

So, a system with such invariance has

H = const

which is what we showed earlier regarding functionals with no explicit
dependence onx.
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Example (ii)

Invariance in translations iny, i.e.

(X ,Y) = (x,y+ ε)
(ξ,η) = (0,1)

So, a system with such invariance has

p = const

which is what we showed earlier regarding functionals with no explicit
dependence ony.
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More than one dependent variable

Transforms with more than one dependent variable

T = θ(t,q;ε)
Qk = φk(t,q;ε)

and the infinitesimal generators are

ξ =
∂θ
∂ε

∣

∣

∣

∣

ε=0

ηk =
∂φk

∂ε

∣

∣

∣

∣

ε=0
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More than one dependent variable

Noether’s theorem: SupposeL(t,q,
.
q) is variationally invariant on[t0, t1]

under a transform with infinitesimal generatorsξ andηk. Given

p =
∂L

∂.qk

, H =
n

∑
k=1

pk
.
qk −L

Then n

∑
k=1

pkηk −Hξ = const

along any extremal of

F{q}=
∫ t1

t0
L(t,q,

.
q)dt
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Example: rotations

Invariance in rotations, i.e.

(T,Q1,Q2) = (t,q1cosε+q2 sinε,−q1sinε+q2 cosε)
(t,q1,q2) = (T,Q1cosε−Q2sinε,Q1sinε+Q2cosε)

The infinitesimal generators are

ξ = 0

η1 = −q1sinε+q2cosε|ε=0 = q2

η2 = −q1cosε−q2 sinε|ε=0 = −q1

So, a system with such invariance has
2

∑
i=1

piηi −Hξ = p1q2− p2q1 = const

Soangular momentum in conserved.
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Common symmetries

Given a system in 3D with Kinetic EnergyT (
.
q) = 1

2m
(.

q
2
1+

.
q

2
2+

.
q

2
3

)

, and

Potential EnergyV (t,q).

◮ invariance ofL under time translations corresponds to conservation
of Energy

◮ invariance ofL under spatial translations corresponds to
conservation of momentum

◮ invariance ofL under rotations corresponds to conservation of
angular momentum
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Finding symmetries

Testing for non-trivial symmetries can be tricky.
Useful result is theRund-Trautman identity:
It leads also to a simple proof of Noether’s theorem
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More advanced cases

◮ Laplace-Runge-Lenz vector in planetary motion corresponds to
rotations of 3D sphere in 4D

◮ symmetries in general relativity

◮ symmetries in quantum mechanics

◮ symmetries in fields
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