General control problem

Variational Methods \& Optimal Control

lecture 26

Matthew Roughan
matthew.roughan@adelaide.edu.au
Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

April 14, 2016

Variational Methods \& Optimal Control: lecture 26 - p.1/37

Pontryagin Maximum Principle

Modern optimal control theory often starts from the PMP. It is a simple, concise condition for an optimal control.

Minimize functional

$$
F=\int_{t_{0}}^{t_{1}} f_{0}(t, \mathbf{x}, \mathbf{u}) d t
$$

subject to constraints $\dot{\mathbf{x}}=\mathbf{f}(t, \mathbf{x}, \mathbf{u})$, or more fully,

$$
\dot{x}_{i}=f_{i}(t, \mathbf{x}, \mathbf{u})
$$

- notice no dependence on $\dot{\mathbf{x}}$ in f_{0}
\triangleright this differs from many CoV problems
- no dependence on $\dot{\mathbf{x}}$ in f_{i} because we rearrange the equations so that derivatives are on the LHS

Pontryagin Maximum Principle (PMP)

Let $\mathbf{u}(t)$ be an admissible control vector that transfers $\left(t_{0}, \mathbf{x}_{0}\right)$ to a target $\left(t_{1}, \mathbf{x}\left(t_{1}\right)\right)$. Let $\mathbf{x}(t)$ be the trajectory corresponding to $\mathbf{u}(t)$. In order that $\mathbf{u}(t)$ be optimal, it is necessary that there exists
$\mathbf{p}(t)=\left(p_{1}(t), p_{2}(t), \ldots, p_{n}(t)\right)$ and a constant scalar p_{0} such that

- \mathbf{p} and \mathbf{x} are the solution to the canonical system

$$
\dot{\mathbf{x}}=\frac{\partial H}{\partial \mathbf{p}} \quad \text { and } \quad \dot{\mathbf{p}}=-\frac{\partial H}{\partial \mathbf{x}}
$$

- where the Hamiltonian is $H=\sum_{i=0}^{n} p_{i} f_{i}$ with $p_{0}=-1$
- $H(\mathbf{x}, \mathbf{u}, \mathbf{p}, t) \geq H(\mathbf{x}, \hat{\mathbf{u}}, \mathbf{p}, t)$ for all alternate controls $\hat{\mathbf{u}}$
- all boundary conditions are satisfied

PMP proof sketch

Consider the general problem: minimize functional

$$
F\{\mathbf{x}, \mathbf{u}\}=\int_{t_{0}}^{t_{1}} f_{0}(t, \mathbf{x}, \mathbf{u}) d t
$$

subject to constraints

$$
\dot{x}_{i}=f_{i}(t, \mathbf{x}, \mathbf{u})
$$

We can incorporate the constraints into the functional using the Lagrange multipliers λ_{i}, e.g.

$$
\tilde{F}=\int_{t_{0}}^{t_{1}} L(t, \mathbf{x}, \dot{\mathbf{x}}, \mathbf{u}) d t=\int_{t_{0}}^{t_{1}} f_{0}(t, \mathbf{x}, \mathbf{u})+\sum_{i=1}^{n} \lambda_{i}(t)\left[\dot{x}_{i}-f_{i}(t, \mathbf{x}, \mathbf{u})\right] d t
$$

Variational Methods \& Optimal Control: lecture 26 - p.5/37

PMP proof sketch

Given such a function we get (by definition)

$$
p_{i}=\frac{\partial L}{\partial \dot{x}_{i}}=\lambda_{i}
$$

So we can identify the Lagrange multipliers λ_{i} with the generalized momentum terms p_{i}

- the p_{i} are known in economics literature as marginal valuation of x_{i} or the shadow prices
- shows how much a unit increment in x at time t contributes to the optimal objective functional \tilde{F}
- the p_{i} are known in control as co-state variables (sometimes written as z_{i})

PMP proof sketch

By definition (in previous lectures) the Hamiltonian is

$$
\begin{aligned}
H(t, \mathbf{x}, \mathbf{p}, \mathbf{u}) & =\sum_{i=1}^{n} p_{i} \dot{x}_{i}-L(t, \mathbf{x}, \dot{\mathbf{x}}, \mathbf{u}) \\
& =\sum_{i=1}^{n} p_{i} \dot{x}_{i}-f_{0}(t, \mathbf{x}, \mathbf{u})-\sum_{i=1}^{n} \lambda_{i}(t)\left[\dot{x}_{i}-f_{i}(t, \mathbf{x}, \mathbf{u})\right] \\
& =-f_{0}(t, \mathbf{x}, \mathbf{u})+\sum_{i=1}^{n} p_{i} f_{i}(t, \mathbf{x}, \mathbf{u})
\end{aligned}
$$

because $\lambda_{i}=p_{i}$, so the \dot{x}_{i} terms cancel. The final result is just the Hamiltonian as defined in the PMP.

Variational Methods \& Optimal Control: lecture 26 - p. $7 / 37$

PMP proof sketch

From previous slide the Hamiltonian can be written

$$
H(t, \mathbf{x}, \mathbf{p}, \mathbf{u})=-f_{0}(t, \mathbf{x}, \mathbf{u})+\sum_{i=1}^{n} p_{i} f_{i}(t, \mathbf{x}, \mathbf{u})
$$

which is the Hamiltonian defined in the PMP. Then the Canonical E-L equations (Hamilton's equations) are

$$
\frac{\partial H}{\partial p_{i}}=\frac{d x_{i}}{d t} \quad \text { and } \quad \frac{\partial H}{\partial x_{i}}=-\frac{d p_{i}}{d t}
$$

Note that the equations $\frac{\partial H}{\partial p_{i}}=\frac{d x_{i}}{d t}$ just revert to

$$
f_{i}(t, \mathbf{x}, \mathbf{u})=\dot{x}_{i}
$$

which are just the system equations.

PMP proof sketch

Finally, note that Hamilton's equations above only relate x_{i} and its conjugate momentum p_{i}. What about equations for u_{i} ? Take the conjugate variable to be z_{i}, and we get (by definition) that

$$
z_{i}=\frac{\partial L}{\partial \dot{u}_{i}}=0
$$

and the second of Hamilton's equations is therefore

$$
\frac{\partial H}{\partial u_{i}}=-\frac{d z_{i}}{d t}=0
$$

which suggests a stationary point of H WRT u_{i}. In fact we look for a maximum (and note this may happen on the bounds of u_{i})

Variational Methods \& Optimal Control: lecture 26 - p.9/37

PMP Example: plant growth

Plant growth problem:

- market gardener wants to plants to grow to a fixed height 2 within a fixed window of time $[0,1]$
- can supplement natural growth with lights (at night)
- growth rate dictates

$$
\dot{x}=1+u
$$

- cost of lights

$$
F\{u\}=\int_{0}^{1} \frac{1}{2} u^{2} d t
$$

PMP Example: plant growth

Minimize

$$
F\{u\}=\int_{0}^{1} \frac{1}{2} u^{2} d t
$$

Subject to $x(0)=0$, and $x(1)=2$ and

$$
\dot{x}=f_{1}(t, x, u)=1+u
$$

Hamiltonian is

$$
\begin{aligned}
H & =-f_{0}(t, x, u)+p f_{1}(t, x, u) \\
& =-\frac{1}{2} u^{2}+p(1+u)
\end{aligned}
$$

PMP Example: plant growth

Hamiltonian is

$$
H=-\frac{1}{2} u^{2}+p(1+u)
$$

Canonical equations

$$
\left.\begin{array}{rlrl}
\frac{\partial H}{\partial p} & =\frac{d x}{d t} & \text { and } & \frac{\partial H}{\partial x}
\end{array}=-\frac{d p}{d t}\right)
$$

LHS $=i$ system DE
RHS $=_{i} \dot{p}=0$ means that $p=c_{1}$ where c_{1} is a constant.

PMP Example: plant growth

Maximum principle requires H be a maximum, for which

$$
\frac{\partial H}{\partial u}=-u+p=0
$$

So $u=p$, and $\dot{x}=1+u$ so

$$
x=\left(1+c_{1}\right) t+c_{2}
$$

The solution which satisfies $x(0)=0$ and $x(1)=2$ is

$$
x=2 t
$$

So $u=c_{1}=1$, and the optimal cost is $1 / 2$.

Variational Methods \& Optimal Control: lecture 26 - p.13/37

PMP and Transversal conditions

Typically we fix t_{0} and $\mathbf{x}\left(t_{0}\right)$, but often the right-hand boundary condition is not fixed, so we need transversal, or natural boundary conditions. Here, they differ from traditional CoV problems in two respects:

- The terminal cost ϕ
- The function f_{0} is not explicitly dependent on \dot{x}

The resulting transversal conditions are

$$
\left.\sum_{i}\left(\frac{\partial \phi}{\partial x_{i}}+p_{i}\right) \delta x_{i}\right|_{t=t_{1}}+\left.\left(\frac{\partial \phi}{\partial t}-H\right) \delta t\right|_{t=t_{1}}=0
$$

for all allowed δx_{i} and δt.

PMP and Transversal conditions

The resulting transversal condition is

$$
\left.\sum_{i}\left(\frac{\partial \phi}{\partial x_{i}}+p_{i}\right) \delta x_{i}\right|_{t=t_{1}}+\left.\left(\frac{\partial \phi}{\partial t}-H\right) \delta t\right|_{t=t_{1}}=0
$$

Special cases

- when t_{1} is fixed and $\mathbf{x}\left(t_{1}\right)$ is completely free we get

$$
\left.\left(\frac{\partial \phi}{\partial x_{i}}+p_{i}\right)\right|_{t=t_{1}}=0, \quad \forall i
$$

- when $\mathbf{x}\left(t_{1}\right)$ is fixed, $\delta x_{i}=0$, and we get

$$
\left.\left(\frac{\partial \phi}{\partial t}-H\right)\right|_{t=t_{1}}=0
$$

Example: stimulated plant growth

Plant growth problem:

- market gardener wants to plants to grow as much as possible within a fixed window of time $[0,1]$
- supplement natural growth with lights as before
- growth rate dictates $\dot{x}=1+u$
- cost of lights

$$
F\{u\}=\int_{0}^{1} \frac{1}{2} u(t)^{2} d t
$$

- value of crop is proportional to the height

$$
\phi\left(t_{1}, \mathbf{x}\left(t_{1}\right)\right)=x\left(t_{1}\right)
$$

Plant growth problem statement

Write as a minimization problem

$$
F\{u, x\}=-x\left(t_{1}\right)+\int_{0}^{1} \frac{1}{2} u^{2} d t
$$

Subject to $x(0)=0$,

$$
\dot{x}=1+u
$$

- the terminal cost doesn't affect the shape of the solution
- but we need a natural end-point condition for t_{1}

Plant growth: natural boundary cond.

The problem is solved as before, but we write the natural boundary
condition at $x=t_{1}$ as

$$
\left.\left(\frac{\partial \phi}{\partial x_{i}}+p_{i}\right)\right|_{t=t_{1}}=0, \quad \forall i
$$

which reduces to

$$
-1+\left.p\right|_{t=t_{1}}=0
$$

Given p is constant, this sets $p(t)=1$, and hence the control $u=1$ (as before).
$-1+\left.p\right|_{t=t_{1}}=0$

Autonomous problems

Autonomous problems have no explicit dependence on t.

- time invariance symmetry
- hence H is constant along the optimal trajectory
- if the end-time is free (and the terminal cost is zero) then the transversality conditions ensure $H=0$ along the optimal trajectory.

$$
\text { Variational Methods \& Optimal Control: lecture } 26 \text { - p.19/37 }
$$

PMP Example: Gout

Optimal Treatment of Gout:

- disease characterized by excess of uric acid in blood
\triangleright define level of uric acid to be $x(t)$
\triangleright in absence of any control, tends to 1 according to

$$
\dot{x}=1-x
$$

- drugs are available to control disease (control u)

$$
\dot{x}=1-x-u
$$

\triangleright aim to reduce x to zero as quickly as possible
\triangleright drug is expensive, and unsafe (side effects)

PMP Example: Gout

PMP Example: Gout

Formulation: Minimize

$$
F\{u\}=\int_{0}^{t_{1}} \frac{1}{2}\left(k^{2}+u^{2}\right) d t
$$

given constant k that measures the relative importance of the drugs cost vs the terminal time. End-conditions are $x(0)=1$, and we wish $x\left(t_{1}\right)=0$, with t_{1} free. The constraint equation is

$$
\dot{x}=1-x-u
$$

Hamiltonian

$$
H=-\frac{1}{2}\left(k^{2}+u^{2}\right)+p(1-x-u)
$$

Variational Methods \& Optimal Control: lecture 26 - p.21/37

PMP Example: Gout

Canonical equations

$$
\left.\begin{array}{rlrl}
\frac{\partial H}{\partial p} & =\frac{d x}{d t} & \text { and } & \frac{\partial H}{\partial x} \\
& \Downarrow & -\frac{d p}{d t} \\
& \Downarrow & \\
1-x-u & =\dot{x} & & -p
\end{array}\right)-\dot{p} 8
$$

LHS $=i$ system DE
RHS $=i \dot{p}=p$ has solution $p=c_{1} e^{t}$
Now maximize H wrt to u, i.e., find stationary point

$$
\frac{\partial H}{\partial u}=-u-p=0
$$

So $u=-p=-c_{1} e^{t}$

Note

- this is an autonomous problem so $H=$ const
- this is a free end-time problem so $H=0$

Substitute values of p and u into H for $t=0$ (i.e. $p=c_{1}=-u$, and $x(0)=1$, and we get

$$
\begin{aligned}
H & =-\frac{1}{2}\left(k^{2}+u^{2}\right)+p(1-x-u) \\
& =-\frac{k^{2}}{2}-\frac{c_{1}^{2}}{2}-c_{1}^{2} \\
& =0
\end{aligned}
$$

and so $c_{1}= \pm k$

$$
\text { Variational Methods \& Optimal Control: lecture } 26 \text { - p. } 23 / 37
$$

PMP Example: Gout

Finally solve $\dot{x}=1-x-u$ where $u=-k e^{t}$ to get

$$
x=1-\frac{k}{2} e^{t}+\frac{k}{2} e^{-t}=1-k \sinh t
$$

The terminal condition is $x\left(t_{1}\right)=0$, and so

$$
t_{1}=\sinh ^{-1}(1 / k)
$$

- when k is small the prime consideration is to use a small amount of the drug, and as $k \rightarrow 0$ then $t_{1} \rightarrow \infty$
\triangleright no optimal for $k=0$
- when k is large, we want to get to a safe level as fast as possible, so as $k \rightarrow \infty$ we get $t_{1} \sim 1 / k$

PMP Example: Lunar lander

Atari game, 1979

http://www.klov.com/game_detail.php?letter=L\&game_id=8465
Variational Methods \& Optimal Control: lecture 26 - p.25/37

PMP Example: Lunar lander

- need to land surface-module on the moon
\triangleright Module mass M (ignore fuel load), uniform gravitational acceleration g (might not be $9.8 \mathrm{~m} / \mathrm{s}^{2}$)
\triangleright initial height $y(0)=h$
\triangleright initial velocity $\dot{y}(0)=v$
- controlled descent so landing is "soft"
\triangleright height of module, and downward velocity brought to zero simultaneously
- thrust f either up or down
\triangleright thrust is bounded, so $|f| \leq f_{\text {max }}$
\triangleright want to minimize fuel cost $|f|$ over time

PMP Example: Lunar lander

System defined (at any time t) by

- position y
- velocity \dot{y}

State equations (mass \times acceleration $=$ force $)$

$$
M \ddot{y}=-M g+f
$$

Initial state

$$
y(0)=h, \quad \text { and } \quad \dot{y}(0)=v
$$

Desired final state (t_{1} is free)

$$
y\left(t_{1}\right)=0 \quad \text { and } \quad \dot{y}\left(t_{1}\right)=0
$$

and we wish to minimize

$$
F\{f\}=\int_{0}^{t_{1}}|f| d t
$$

Variational Methods \& Optimal Control: lecture 26 - p.27/37

PMP Example: Lunar lander

Convert the problem to standard form by taking

$$
\begin{aligned}
x_{1} & =y \\
x_{2} & =\dot{y} \\
u & =f / M
\end{aligned}
$$

So the state equation becomes

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-g+u
\end{aligned}
$$

And the initial and final conditions are

$$
\begin{array}{lll}
x_{1}(0)=h & \text { and } & x_{2}(0)=v \\
x_{1}\left(t_{1}\right)=0 & \text { and } & x_{2}\left(t_{1}\right)=0
\end{array}
$$

PMP Example: Lunar lander

PMP Example: Lunar lander

Maximize $f(u)=-|u|+p_{2} u$, with $|u| \leq 1$

- three possible locations for a maximum
\triangleright left or right boundary, or $u=0$
- The three values (in order from left to right) are

$$
f(u)=-1-p_{2}, \quad 0, \quad-1+p_{2}
$$

- Three cases $p_{2}<-1,-1<p_{2}<1$ or $p_{2}>1$
- maximum occurs at

$$
u=\left\{\begin{aligned}
+1, & \text { if } p_{2}>1 \\
0, & \text { if }-1<p_{2}<1 \\
-1, & \text { if } p_{2}<-1
\end{aligned}\right.
$$

- If bounds are $|u| \leq f_{\max } / M$, then the solution scales.

PMP Example: Lunar lander

Now we have to choose u to maximize H

- $|u|$ is bounded by $f_{\text {max }} / M$

Ignore the terms in H that are constant WRT to u and we have to maximize $-|u|+p_{2} u$.

Variational Methods \& Optimal Control: lecture 26 - p.31/37

PMP Example: Lunar lander

Call p_{2} a switching function, and note that we have

$$
p_{2}=-c_{1} t+c_{2}
$$

- during the final descent, $x_{2}<0$
\triangleright we must be going down just before we land
- but $x_{2}\left(t_{1}\right)=0$, so $\dot{x_{2}}>0$ near t_{1}
\triangleright we must be decelerating, so that we stop at t_{1}
\triangleright hence we must have positive thrust
\triangleright optimal thrust must be at max, e.g. $u=f_{\max } / M$
- so the equations for motion during final descent are

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-g+f_{\max } / M=k>0
\end{aligned}
$$

PMP Example: Lunar lander

PMP Example: Lunar lander

Solution:

- if start above, or on the critical curve
\triangleright if travelling upwards, max thrust down to cancel upwards velocity
\triangleright then free-fall, until on the critical curve

$$
x_{1}=\frac{1}{2} k\left(t-t_{1}\right)^{2} \quad \text { and } \quad x_{2}=k\left(t-t_{1}\right)
$$

\triangleright max thrust up until stop on the surface

- if lie below the critical curve
\triangleright you crash

Variational Methods \& Optimal Control: lecture 26 - p.33/37

PMP Example: Lunar lander

(

PMP Example: Lunar lander

- What's the point of this example
\triangleright previously, we couldn't easily deal with and objective like $|u|$
\triangleright the function isn't "smooth"
\triangleright PMP can work for such examples
\triangleright it doesn't require smoothness, you just need to be able to find a maximum

