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• Introduction

What is the point of this course?

Example 1: The money pit.

Example 2: Catenary: shape of a hanging wire.

Example 3: Brachystochrone: curve of quickest descent.

Example 4: Dido’s problem

• Revision

Extrema of functions of one variable.

• Extra bits
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• Revision, part ii

Extrema of functions of multiple variables. Taylor’s theorem and the chain rule in N-D. Hessians and classification of
extrema.

Example 1: f(x1,x2) = x2
1−x2

2+x3
1

Example 2: f(x1,x2) = r −1/2r2, where r2 = x2
1 +x2

2

Example 3: f(x1,x2) = x3
2−3x2

1x2

• Extra bits
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• Revision, part iii

Constrained extrema and Lagrange multipliers.

Example 1: Rectangle of fixed perimeter with maximal area.

Example 2: Largest area rectangle inscribed in a circle.

Example 3: Largest area rectangle inscribed in a ellipse.

Example 4: Maximize f(x1,x2,x3) = x1x2x3 subject to x1x2 +x1x3 +x2x3 = 1, and x1 +x2 +x3 = 3

Example 5: Inequality constraint: largest area rectangle inscribed in a unit circle.

Example 6: Maximize3x subject to x≤ 10.

• Revision, part iv

Vector space notation.
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• Functionals

In CoV we are not maximizing the value of a simple function, wewant to find a “curve” that maximizes (or minimizes)
a functional. Think of functionals as a generalization of a function, except we can think of it as an∞-dimensional max.
problem.

Example 1: Catenary: the shape of a hanging wire.

Example 2: Brachystochrone: curve of quickest descent.

Example 3: Bent elastic beam.

Example 4: Stimulated plant growth.

Example 5: Parking a car.
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• Fixed-end point problems

We’ll start with the simplest functional maximization problem, and show how to solve by finding thefirst variationand
deriving theEuler-Lagrangeequations:

d
dx

(

∂ f
∂y′

)

−
∂ f
∂y

= 0

Example 1: Catenary: a hanging wire (without a length constraint).

Example 2: Geodesics in a plane.

• Special cases

Now that we know the Euler-Lagrange (E-L) equations, we can use them directly, but there are some special cases for
which the equations simplify, and make our life easier:

– f depends only ony′

– f has no explicit dependence onx (autonomous case)

– f has no explicit dependence ony

– f = A(x,y)y′ +B(x,y) (degenerate case)

• Special case 1

When f depends only ony′ the E-L equations simplify to

∂ f
∂y′

= const

An example of this is calculating geodesics in the plane (which we all know are straight lines).

Example 1: Geodesics in a plane.

Example 2: Fermat’s principle and Snell’s law
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• Special case 2

When f has no dependence onx we call this an autonomous problem, and we can replace the E-Lequations with

H(y,y′) = y′
∂ f
∂y′

− f (y,y′) = const

We will seeH again later – it often turns out to be a conserved quantity like energy, and so arises naturally in computing
the shape of a catenary.

Example 1: Catenary: the shape of a hanging wire.
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• Special case 2: autonomous problems continued

H(y,y′) = y′
∂ f
∂y′

− f (y,y′) = const

We will seeH again later – it often turns out to be a conserved quantity like energy, and so arises naturally in computing
the shape of the brachystochrone.

Example 1: Brachystochrone: curve of quickest descent.
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• Special case 3

When f has no explicit dependence ony the E-L equations simplify to give

∂ f
∂y′

= const

An example where we might use this is in calculating geodesics on non-planar objects such as the sphere.

Example 1: Geodesics on the unit sphere.

Example 2: Geodesics on other surfaces in IR3.

Example 3: Geodesics on a cylinder.
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• Invariance of the E-L equations

We side-track here to note that extremals found using the E-Lequations don’t depend on the coordinate system! This
can be very useful – a change of co-ordinates can often simplify a problem dramatically.

Example 1: Polar (circular) coordinates.

• Special case 4

When f = A(x,y)y′ +B(x,y) we call this a degenerate case, because the E-L equations reduce to

∂A
∂x

−
∂B
∂y

= 0

but we can’t necessarily solve these, and when they are true,the functional’s value only depends on the end-points, not
the actual shape of the curve.

Example 1: f(x,y,y′) = (x2 +3y2)y′ +2xy
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• Extensions

Now we consider extensions to the simple E-L equations presented so far:

– when f includes higher-order derivatives, e.g.,f (x,y,y′,y′′), e.g., the shape of a bent bar.

– when there are several dependent variables (i.e.,y is a vector), e.g., calculating a particles trajectory.

– when there are several independent variables (i.e.,x is a vector), e.g. calculating extremal surface.
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• Extension 1: higher-order derivatives

When f includes higher-order derivatives then the E-L equations can be extended, e.g., if the function includes ay′′

term, i.e.,f (x,y,y′,y′′), then ∂ f
∂y

−
d
dx

∂ f
∂y′

+
d2

dx2

∂ f
∂y′′

= 0

but now we now need extra edge conditions. A simple example wewill consider is the shape of a bent bar.

Example 1: F{y} =

Z 1

0
(1+y′′2)dx

Example 2: F{y} =

Z π/2

0

(

y′′2−y2+x2) dx

Example 3: Bent elastic beam.
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• Extension 2: several dependent variables

When there are several dependent variables, i.e.,y is a vector, then the E-L equations generalize to give one DE per
dependent variable. A simple example is when we calculate the trajectory of a particle in 3D. This section introduces
a number of physics ideas/principles: potentials, Lagrangians, Hamilton’s principle, Newton’s laws of motion, and
conservations laws.

Example 1: F{q} =
R 1

0

(.
q

2
1 +(

.
q2−1)2+q2

1+q1q2

)

dt

Example 2: Movement of a particle.

Example 3: Simple pendulum.

Example 4: Kepler’s problem of planetary motion.

Example 5: Brachystochrone in 3D.
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• Extension 3: several independent variables

When there are several independent variables, e.g.,(x,y) and the extremal we wish to find represents, for instance, a
surfacez(x,y), and f is a functionf (x,y,z(x,y),zx,zy), then the E-L equation generalizes to give

∂ f
∂z

−
∂
∂x

∂ f
∂zx

−
∂
∂y

∂ f
∂zy

= 0

Example 1: F{z} =

ZZ

Ω
1+

1
2

z2
x +

1
2

z2
y dxdy

Example 2: Minimal area surface.
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• Numerical Solutions

The E-L equations may be hard to solve

Natural response is to find numerical methods

– Numerical solution of E-L DE

∗ we won’t consider these here (see other courses)

– Euler’s finite difference method

– Ritz (Rayleigh-Ritz)
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∗ In 2D: Kantorovich’s method

• Euler’s finite difference method

We can approximate our function (and hence the integral) onto a finite grid. In this case, the problem reduces to a
standard multivariable maximization (or minimization) problem, and we find the solution by setting the derivatives to
zero. In the limit as the grid gets finer, this approximates the E-L equations.

• Ritz’s method

In Ritz’s method (called Kantorovich’s methods where thereis more than one independent variable), we approximate
our functions (the extremal in particular) using a family ofsimple functions. Again we can reduce the problem into a
standard multivariable maximization problem, but now we seek coefficients for our approximation.

Example 1: F{y} =

Z 1

0

[

1
2

y′2 +
1
2

y2−y

]

dx

Example 2: Catenary: the shape of a hanging wire.

Example 3: F{z(x,y)} =
Z b

−b

Z a

−a

(

z2
x +z2

y −2z
)

dxdy
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• Constraints

We now include additional constraints into the problems:

– Integral constraints of the form Z

g(x,y,y′)dx= const

e.g., the Isoperimetric problem.

– Holonomic constraints, e.g.,g(x,y) = 0

– Non-holonomic constraints, e.g.,g(x,y,y′) = 0

– We won’t consider inequality constraints until later.

• Integral Constraints

Integral constraints are of the form Z

g(x,y,y′)dx= const

The standard example of such a problem is Dido’s problem. We solve these by introducing the functional analogy of a
Lagrange multiplier.

Example 1: Dido’s problem: simplified

Example 2: Catenary of fixed length
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Example 3: Dido’s problem - traditional
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• Holonomic Constraints

Constraints of the formg(x,y) = 0, or g(t,q) = 0, which don’t involve derivatives ofy(x) or q can also be handled
using a Lagrange multiplier technique, but we have to introduce a Lagrange multiplier functionλ(x), not just a single
valueλ. Effectively we introduce one Lagrange multiplier at each point where the constraint is enforced.

Example 1: Geodesics on the sphere.

• Non-Holonomic Constraints

Constraints of the formg(x,y,y′) = 0, org(t,q,
.
q) = 0, which involve derivatives. They are effectively additional DEs

which we need to solve, but we can once again use Lagrange multipliers.

Example 1: A simple solution for F{y} =
R b

a f (x,y,y′,y′′)dx
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• Intro to Optimal Control

One way we see non-holonomic constraints is when we considercontrol problems. In these we seek to control a system
described by a DE (the constraint) subject to some input which we can control (optimize).

Example 1: Stimulated plant growth
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• Non-fixed end point problems

What happens when we don’t fix the end-points of an extremal? In this casenatural boundary conditions are auto-
matically introduced, and these can allow us to solve the E-Lequations.

• Free end points: Fixedx, Freey and/or y′

First we’ll consider what happens when we allowy or y′ to vary at the end-points, but we still keep thex values of the
end-points fixed atx0 andx1.

Example 1: Freely supported elastic beam.

Example 2: Elastic beam fixed at one end point.

• Intro to Optimal Control (part II)

Often in optimal control problems we may specify the initialstate, but not the final state. However, there may be a cost
associated with the final state, and we include this in the functional to be minimized (or maximized). We call this a
terminal cost.

Example 1: Stimulated plant growth with a free end-point.
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• Free end points: Freex, y and y′

We now allowx to vary as well, although we may apply some condition on the relationship betweenx andy, for instance
that the end point must lie on a curve. In these cases we often rename our extremals, and call themtransversals.

Example 1: Shortest-path between two curves.

Example 2: Orbit transfer problem.

• Transversals

When we consider an extremal joining a curve to a point (or twocurves) then we often call the extremal a transversal.
The previous condition simplifies in many such cases, for instance, in many situations we look for a transversal that
joins the proscribed curve at right angles.

Example 1: Shortest path from the origin to a curve.

Example 2: Generalized shortest path between two curves.

Example 3: Shape of a wire hanging between two curves.

Example 4: Curve of fastest descent from a point to line.

Example 5: Shortest-path from a point to a surface.
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• Broken Extremals

Until now we have required that extremal curves have at leasttwo well-defined derivatives. Obviously this is not always
true (see for instance Snell’s law). In this lecture we consider the alternatives.

Example 1: F{y} =
Z 1

−1
y2(1−y′)2 dx
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• Inequality Constraints and Optimal Control

Earlier we didn’t consider inequalities as constraints, but these are needed particularly in control. For instance, often
there is a maximum force we can apply to an object. The resulting extremals either (i) satisfy the E-L equations, or (ii)
lie along the edge of the constraint. We also get boundary conditions between these two types of regions.

Example 1: Parking a car.

Example 2: Shortest-path avoiding an obstacle.
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• More Optimal Control Examples

First we’ll cover a bit more terminology, and then some examples.

Example 1: Dynamic production control.

Example 2: Optimal economic growth.

Example 3: Rocket launch.
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• Hamilton’s formulation

We’ve seen the HamiltonianH earlier on, but haven’t explored its full power. Firstly, using H can often result in a
simpler approach than solving the E-L equations, e.g., where f has no dependence onx, or where there is more than
one dependent variable. More importantly though, this formulation can lead to an understanding of how symmetries
in the problem of interest lead to conservation laws. Finally, we will use the Hamiltonian in the Pontryagin Maximum
Principle, which we will study soon.

Example 1: Simple pendulum: Hamilton’s formulation.

Example 2: Simple pendulum: Hamilton-Jacobi approach.
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• Conservation Laws

One of the more exciting things we can derive relates to fundamental physics laws: conservation of energy, momentum,
and angular momentum. We can now derive all of these from an underlying principle: Noether’s theorem.

Example 1: Invariance under translations in x is≡ conservation of H (energy).

Example 2: Invariance under translations in y is≡ conservation of p (momentum).

Example 3: Invariance under rotations is≡ conservation of angular momentum.
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• Pontryagin Maximum Principle

Modern optimal control theory often starts from the PMP. It is a simple, concise condition for an optimal control.

Example 1: Stimulated plant growth.

Example 2: Stimulated plant growth with a free end-point.

Example 3: Optimal treatment of gout

Example 4: Lunar lander.

lecture28
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• Bang-Bang controllers and other related issues

Here we consider more generally what conditions result in a bang-bang controller.

Example 1: Optimal fish harvesting

Example 2: Time minimization problem.

Example 3: Singular control example.
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• Feedback control systems

In all of our previous examples, we solve optimization problem “all at once”, i.e., we plan the shape of the curvey to
optimize the functional. However, sometimes, we need a control that reacts continuously to perturbations in a system.
Such controllers typically utilize feedback.

Example 1: Liquid level control.
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• Classification of extrema

We have so far typically ignored the issue of classification of extrema, but remember that for simple stationary points
we need to look at higher derivatives to see if a stationary point is a maximum, minimum or point of inflection. We
need an analogous process for extremal curves as well.
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