Tutorial 1: Wednesday 1st August

Revision:

1. Basic Skills

- Draw a diagram showing the general shape of a cubic. Now draw one for a quartic, a quintic and a polynomial of degree 6. What sort of degenerate cases are there?
- If \mathbf{x} and \mathbf{y} are two given vectors, and $t \in[0,1]$, what does $t \mathbf{x}+(1-t) \mathbf{y}$ (or $\mathbf{y}+t(\mathbf{x}-\mathbf{y}))$ represent geometrically?
- Write the definition of a partial derivative, and find the partial derivatives with respect to x of
(a) $f(x, y)=x^{2}+y^{4}-3 x^{4} y$
(b) $f(x, y, z)=x \sin (2 x+y z)$
(c) $f(x, y, z)=\left(x^{2}-y\right)^{2} e^{z}$
- Find the gradient $\nabla f(\mathbf{x})$ for the following functions f.
(a) $f(x, y)=x^{2}+y^{4}-3 x^{4} y$
(b) $f(x, y, z)=x \sin (2 x+y z)$
(c) $f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}^{2}-x_{2}\right)^{2} e^{x_{3}}$
(d) $f(\mathbf{x})=\|\mathbf{x}\|$, where $\mathbf{x} \in \mathbb{R}^{n}$
- Find the Taylor series expansion for
(a) $\cos x$
(b) $\ln (1+x)$
about the point $x=0$.

2. Use the multivariable chain rule to find $d z / d t$ where

$$
z=2 x^{2}+3 x y-4 y^{2}
$$

and

$$
x=\cos t, \quad \text { and } y=\sin t .
$$

3. Use Taylor's Theorem to derive a polynomial approximation (of at least degree 2) for $f(x, y)=\sin \left(x+y^{2}\right)$.
4. Find the cylinder of largest volume that can be placed inside a sphere of radius 1.
